Structural and optical properties of VO2+ doped methacrylic acid ethylacrylate (MAA:EA) copolymer films

Open access

Abstract

Pure and VO2+ doped methacrylic acid ethylacrylate (MAA:EA) copolymer films were prepared by using a solution casting method. Various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy and electron paramagnetic resonance were employed for characterization of the samples. XRD patterns showed some degree of crystallinity of the doped polymer films due to interaction of the MAA:EA copolymer with VO2+. FT-IR spectral studies of pure and VO2+ doped MAA:EA copolymer films displayed significant structural changes within the doped copolymer film indicating the complexation. The optical absorbance of the pure and VO2+ doped films were measured in the 200 nm to 800 nm wavelength range. The values of the absorption edge and indirect band gaps were calculated. The optical band gap decreased with the increase of mol% of VO2+. From the EPR spectra, the spin- Hamiltonian parameters (g and A) were evaluated. The values of the spin-Hamiltonian parameters confirmed that the vanadyl ions were present in MAA:EA copolymer films as VO2+ molecular ions in an octahedral site with a tetragonal compression (C4v). The morphology of the copolymer samples was examined by scanning electron microscopy. The enhanced crystalline nature of the doped copolymer was identified from SEM analysis.

[1] LEON A.G., DIRIX Y., STAEDLE Y., FELDMAN K., HHNER G., CASERI W.R., SMITH P., Appl. Opt., 39 (2001), 4847.

[2] SRIVASTAVA S., HARIDAS M., BASUJ K., Mater. Sci., 31 (2008), 213.

[3] TOKIZAKI T., NAKAMURA A., KANEKO S., UCHIDA K., OMI S., TANJI H., ASAHARA Y., Appl. Phys. Lett., 65 (1991), 941.

[4] WANG C., TAM K.C., JENKINS R.D., TAN C.B., J. Phys. Chem. B, 107 (2003), 4667.

[5] WANG C., TAM K.C., TAN C.B., Langmuir, 20 (2004), 7933.

[6] YOSHIDA K., DUBIN P.L., Colloids Surf. A, 147 (1999), 161.

[7] KOSMELLA S., KOTZ J., SHIRAHAMA K., LIU J., J. Phys. Chem. B, 102 (1998), 6459.

[8] CAVASINO F.P., HOFFMANN H., SBRIZIOLO C., TURCO LIVER M.L., Colloids Surf. A, 183 (2001), 689.

[9] BAJAJ P., MEENAKSHI G., CHAVAN R.B., J. Appl. Poly. Sci., 51 (1994), 423.

[10] WARWICK M.E.A., BINIONS R., J. Mater. Chem. A, 2(2014), 3275.

[11] WANG Z., CHEN J., HU X., Thin Solid Films, 375 (2000), 238.

[12] OZER N., Thin Solid Films, 305 (1997), 80.

[13] LIVAGE J., J. Coord. Chem. Rev., 190 - 192 (1999), 391.

[14] TAKAHASHI K., WANG Y., CAO G., Appl. Phys. Lett., 86 (2005), 053102 (1- 3).

[15] BRYDSON J.A., Plastic materials, Oxford, North London, 1999.

[16] ZIDAN H.M., J. Polym. Sci. Pol. Phys., 41 (2003), 112.

[17] CHAUDHARI H.K., KEKLER D.S., J. Appl. Polym. Sci., 62 (1) (1996), 15.

[18] BARBERO B.L., CADUS L.E., Appl. Catal. A-Gen., 237 (2003), 263.

[19] HODGE R.M., EDWARD G.H., SIMON G.P., Polymer, 37 (1996), 1371.

[20] WIECZOREK W., STEVENS J.R., J. Phys. Chem. B., 101 (1997), 1529.

[21] SELIM M.S., SEOUDI R., SHABAKA A.A., Mater. Lett., 59 (2005), 2650.

[22] MADHAVA KUMAR Y., BHAGYASREE K., GOPAL N.O., RAMU C.H., Adv. Polym. Tech., 6 (2) (2016), 26.

[23] UMA DEVI C., SHARMA A.K., N RAO V.V.R., Mater. Lett., 56 (2002), 167.

[24] DAVIS P.W., SHALLIDAY T.S., Phys. Rev., 118 (1960), 1020.

[25] THUTUPALLI G.M., TOMILIN S.G., J. Phys. D. Appl. Phys., 9 (1976), 1639.

[26] REDDEPPA N., SHARMA A.K., N RAO V.V.R., WEN C., Microelectron. Eng., 112 (2013), 57.

[27] LUAN Z., XU J, HE H., KLINOWSKI J., KEVAN L., J. Phys. Chem., 100 (1996), 19595.

[28] ABRAGAM A., BLEANEY B., Electron Paramagnetic Resonance of Transition Metal Ions, Oxford, Clarendon 1970.

[29] OMKARAM I., SREEKANTH CHAKRADHAR R.P., LAKSHMANA RAO J., Physica B, 388(2007), 318.

[30] ZHANG S., LEE J Y., HONG L., J. Power Sources, 126 (2004), 125.

[31] CHU P.P., REDDY M.J., J. Power Sources, 115 (2003), 288.

[32] EL-KHODARY A., Physica B, 405 (2010), 3401.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 41
PDF Downloads 40 40 18