Solid-solid intercalation and optical properties of VO-8-hydroxyquinoline decoration of layered silicate magadiite

Open access

Abstract

Coordination of vanadyl (VO2+) ions with 8-hydroxyquinoline (8Hq) in the interlayer space of layered silicate magadiite (mag) was realized by solid-solid intercalation. Composition, structure and morphology of this compound were studied by X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The obtained results indicate that the basal spacing of decorated mag increased after intercalation and suggest that VO-8Hq decorated into the interlayer of mag (VO-mag-8Hq) was successfully synthesized for the first time. Optical properties of VO-mag-8Hq were studied by ultraviolet-visible (UV-Vis) and photoluminescence spectroscopy (PL). The findings reveal that VO-8Hq complexes in the interlayer space exhibit extraordinary fluorescence properties and the confined space of mag influences the optical properties of VO-8Hq complexes.

[1] RUIZ-HITZKY E., ARANDA P., DARDER M., OGAWA M., Chem. Soc. Rev., 40 (2011) 801.

[2] ZHANG Y., WANG N., HUANG Y., HUANG C., MEI X., MENG C., Mater. Sci.-Poland, 32 (2014) 236.

[3] WANG Q., ZHANG Y., ZHENG J., WANG Y., HU T., MENG C., Dalton T., 46 (2017) 4303.

[4] ZHENG J., ZHANG Y., WANG N., ZHAO Y., TIAN F., MENG C., Mater. Lett., 171 (2016) 240.

[5] ZHANG Y., ZHENG J., HU T., TIAN F., MENG C., Appl. Surf. Sci., 371 (2016) 189.

[6] ROTH W.J., NACHTIGALL P., MORRIS R.E., CEJKA J., Chem. Rev., 114 (2014) 4807.

[7] ZHANG Y., ZHENG J., WANG Q., ZHANG S., HU T., MENG C., Appl. Surf. Sci., 423 (2017) 728.

[8] ZHENG J., ZHANG Y., JING X., LIU X., HU T., LV T., ZHANG S., MENG C., Colloids Surf. A, 518 (2017) 188.

[9] CHIU C.-W., HUANG T.-K., WANG Y.-C., ALAMANI B.G., LIN J.-J., Prog. Polym. Sci., 39 (2014) 443.

[10] OGAWA M., SAITO K., SOHMIYA M., Dalton T., 43 (2014) 10340.

[11] DIAZ U., CORMA A., Dalton T., 43 (2014) 10292.

[12] MACEDO T.R., AIROLDI C., Micropor. Mesopor. Mat., 94 (2006) 81.

[13] OLIVEIRA DE M.M., FERNANDES M.M., FONSECA M.G., SILVA FILHO DA E.C., SOUZA DE A.G., GASLAIN F., JABER M., Micropor. Mesopor. Mat., 196 (2014) 292.

[14] ZHANG S., LIU Q., CHENG H., ZENG F., Appl. Surf. Sci., 331 (2015) 234.

[15] ZHANG Y., ZHENG J., WANG Q., HU T., MENG C., RSC Adv., 6 (2016) 93741.

[16] ZHANG Y., ZHENG J., ZHAO Y., HU T., GAO Z., MENG C., Appl. Surf. Sci., 377 (2016) 385.

[17] THIESEN P.H., BENEKE K., LAGALY G., J. Mater. Chem., 12 (2002) 3010.

[18] PARK K.-W., JUNG J.H., KIM S.-K., KWON O.-Y., Appl. Clay Sci., 46 (2009) 251.

[19] WANG Q., ZHANG Y., HU T., JING X., MENG C., Micropor. Mesopor. Mat., 246 (2017) 102.

[20] OKADA T., NOZAKI N., SEO J., KWON J.E., PARK S.Y., HASHIZUME H., SASAKI T., OGAWA M., RSC Adv., 7 (2017) 8077.

[21] OGAWA M., J. Mater. Chem., 12 (2002) 3304.

[22] SELVAM T., INAYAT A., SCHWIEGER W., Dalton T., 43 (2014) 10365.

[23] SCHMITZ C., SCHMIDT H.-W., THELAKKAT M., Chem. Mater., 12 (2000) 3012.

[24] KHAORAPAPONG N., OGAWA M., Appl. Clay Sci., 35 (2007) 31.

[25] ZHANG Y., FAN M., LIU X., HUANG C., LI H., Eur. J. Inorg. Chem., 2012 (2012) 1650.

[26] ZHANG Y., ZHANG J., ZHANG X., MO S., WU W., NIU F., ZHONG Y., LIU X., HUANG C., LIU X., J. Alloy. Compd., 570 (2013) 104.

[27] ZHANG Y., WANG N., HUANG Y., WU W., HUANG C., MENG C., Ceram. Int., 40 (2014) 11393.

[28] ZHANG Y., MENG C., Mater. Lett., 160 (2015) 404.

[29] ZHANG Y., TAN X., MENG C., Mater. Sci.-Poland, 33 (2015) 560.

[30] ZHANG Y., Mater. Sci.-Poland, 34 (2016) 169.

[31] ZHANG Y., Mater. Sci.-Poland, 35 (2017) 188.

[32] ZHANG Y., JING X., WANG Q., ZHENG J., ZHANG S., HU T., MENG C., Micropor. Mesopor. Mat., 249 (2017) 137.

[33] ZHANG Y., ZHENG J., WANG Q., HU T., TIAN F., MENG C., Appl. Surf. Sci., 399 (2017) 151.

[34] KIKUTA K., OHTA K., TAKAGI K., Chem. Mater., 14 (2002).

[35] BI Y., LAMBERT J.-F., MILLOT Y., CASALE S., BLANCHARD J., ZENG S., NIE H., LI D., J. Mater. Chem., 21 (2011).

[36] IDE Y., OCHI N., OGAWA M., Angew. Chem. Int. Edit., 50 (2011).

[37] ARAG N.F., CANO RUIZ J., MACEWAN D., Nature, 183 (1959) 740.

[38] WANG Q., ZHANG Y., ZHENG J., HU T., MENG C., Micropor. Mesopor. Mat., 244 (2017) 264.

[39] WAGNER C.D., RIGGS W.M., DAVIS L.E., MOULDER J.F., Handbook of X-Ray Photoelectrom Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1979.

[40] GHEDINI M., DEDA LA M., AIELLO I., GRISOLIA A., Synthetic Met., 138 (2003) 189.

[41] MONZON L.M., BURKE F., COEY J., J. Phys. Chem. C, 115 (2011) 9182.

[42] BRINKMANN M., GADRET G., MUCCINI M., TALIANI C., MASCIOCCHI N., SIRONI A., J. Am. Chem. Soc., 122 (2000) 5147.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 18
PDF Downloads 79 79 7