Structural and dielectric properties of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by sugar solutions

Open access

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have been synthesized using co-precipitation method. Their microstructure and dielectric properties were studied. The sugar solutions like glucose, fructose and sucrose were used as stabilizers to control the size of the SPIONs. The crystal structure and grain size of the particles were determined by X-ray diffraction. The magnetic studies of the samples were carried out using the vibrating sample magnetometer and their surface morphology was studied by HRTEM, FE-SEM and zeta potential. The dielectric properties of glucose-SPIONs (GF), fructose-SPIONs (FF) and sucrose-SPIONs (SF) were investigated in the frequency range of 10 Hz to 5 MHz at selected temperatures. The FF showed a high dielectric constant of 62 at 1 MHz and the dielectric properties of SPIONs were found to have been significantly improved, especially in the low frequency regime according to the Maxwell-Wagner interfacial polarization. The AC conductivity measurements revealed that the electrical conduction depends on both frequency and temperature. Impedance analysis was carried out using Cole-Cole plot and the conduction mechanism of the studied compounds was explained. R and C values were further calculated using RC-circuit.

[1] BHATT A.S., KRISHNA BHAT D., SANTOSH M.S., J. Phys.-Condens. Mat., 405 (2010), 2078.

[2] RAHMAN O., MOHAPATRA S.C., AHMAD S., Mater. Chem. Phys., 132 (2012), 196.

[3] OZKAYA T., TOPRAK M.S., BAYKAL A., KAVAS H., AKTAS B., J. Alloy. Compd., 472 (2009), 18.

[4] KAUSHIK A., KHAN R., SOLANKI P.R., PANDEY P., ALAM J., AHMAD S., MALHOTRA B.D., Biosen. Bioelectron., 24 (2008), 676.

[5] KAUSHIK A., SOLANKI P.R., ANSARI A.A., MALHOTRA B.D., AHMAD S., Sensor. Actuat. B-Chem., 138 (2009), 572.

[6] MAHDAVI M., AHMAD M., HARON M., NAMVAR F., NADI B., RAHMAN M., AMIN J., J. Mol., 18 (2013), 7533.

[7] NEMALA H., THAKUR J.S., NAIK V.M., VAISHNAVA P.P., LAWES G., NAIK R., J. Appl. Phys, 116 (2014), 034309.

[8] IWASAKI T., NAKATSUKA R., MURASE K., TAKATA H., NAKAMURA H., WATANO S., Int. J. Mol. Sci., 14 (2013), 9365.

[9] ZHANG L., HE R., GU H.C., Appl. Surf. Sci., 253 (2006), 2611.

[10] LAURENT S., FORGE D., PORT M., ROCH A., ROBIC V., ELST L.V., MULLER R.N., Chem. Rev., 108 (2008), 2064.

[11] SONG N.N., YANG H.T., LIU H.L., REN X., DING H.F., ZHANG X.Q., CHENG ZH., Sci. Rep.-UK, 3 (2013), 3161.

[12] LANGFORD J.I., WILSON A.J.C., J. Appl. Crystallogr., 11 (1978), 102.

[13] CHEN Y.-J., TAO J., XIONG F., ZHU J.-B., GU N., ZHANG Y.-H., DING Y., GE L., Drug. Dev. Ind. Pharm., 36 (2010), 1235.

[14] CAIZER C., Nanoparticle Size Effect on Some Magnetic Properties, Handbook of Nanoparticles, Springer, Switzerland, 2016 p.475.

[15] MORADMARD H., SHAYESHTECH S.F., TOHIDI P., ABBAS Z., KHALEGI M., J. Alloy. Compd., 650 (2015), 116.

[16] SRIVASTAVA M., SINGH J., MISHRA R.K., SINGH M.K., OJHA A.K., YASHPAL M., SUDHANSHU S., Curr. Appl. Phys., 14 (2014), 980.

[17] JOSHI S., KUMAR M., CHHOKER S., SRIVASTAVA G., JEWARIYA V., SINGH V.N., J. Mol. Struct, 1076 (2014), 55.

[18] NAIDU C.B.K., MADHURI W., Mater. Chem. Phys., 181 (2016), 432.

[19] GABAL M.A., ALANGARI Y.M., ZAKI H.M., J. Magn. Magn. Mater., 363 (2014), 6.

[20] HOSSAIN A.A., BISWAS T., YANAGIDA T., TANAKA H., TABATA H., KAWAIT., Mater. Chem. Phys., 120 (2010), 461.

[21] TKACH A., VILARINHO P.M., KHOLKIN., J. Appl. Phys. A, 79 (2004), 2013.

[22] JONSCHER A.K., Nature, 267 (1977), 673.

[23] MOCANU Z.V., AIRIMIOAEI M., CIOMAGA C.E., CURECHERIU L., TUDORACHE F., TASCU S., IORDAN A.R., PALAMARU N.M., MITOSERIU L., J. Mater. Sci, 49 (2014), 3276.

[24] ABDEEN A.M., J. Magn. Magn. Mater., 185 (1998), 199.

[25] MANOHAR A., KRISHNAMOORTHI C., Mater. Chem. Phys., 192 (2017), 235.

[26] NAIDU C.B.K., KIRAN R.S., MADHURI W., Mater. Res. Bull., 89 (2017), 125.

[27] BATOO K., ANSARI M., J. Nano Res. Lett., 7 (2012), 112.

[28] VERMA K., KUMAR A., VARSHNEY D., J. Alloy. Compd., 526 (2012), 91.

[29] YOUNAS M., NADEEM M., ATIF M., GROSSING R., J. Appl. Phys., 109 (2011), 093704.

[30] BEHERA B., NAYAK P., CHOUDHARY R., J. Alloy. Compd., 436 (2007), 226.

[31] MANDAL S.K., SINGH S., DEY P., ROY J.N., MANDAL P.R., NATH T.K., J. Alloy. Compd., 656 (2016), 887.

[32] OLIVEIRA DE H.P., ANDRADE C.A.S., MELO DE C.P., J. Colloid. Interf. Sci., 319 (2008), 441.

[33] CHALIKIAN T.V., J. Phys. Chem. B, 102 (1998), 6921.

[34] HÖCHTL P., BORESCH S., STEINHAUSER O., J. Chem. Phys., 112 (2000), 9810.

[35] JANSSON H., BERGMAN R., SWENSON J., J. Non- Cryst. Solids, 351 (2005), 2858.

[36] TAIT M.J., SUGGETT A., FRANKS F., ABLETT S., QUICKENDEN P.A., J. Solution Chem., 1 (1972), 131.

[37] FRANKS F., REID D.S., SUGGETT A., J. Solution Chem., 2 (1973), 99.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 169 35
PDF Downloads 91 91 30