FESEM, XRD and DRS studies of electrochemically deposited boron doped ZnO films

Open access


In this study, the effect of boron (B) incorporation into zinc oxide (ZnO) has been investigated. The undoped, 2 at.%. and 4 at.% B doped ZnO films were deposited on p-type silicon (Si) substrates by electrodeposition method using chronoamperometry technique. Electrochemical depositions were performed by applying a constant potentiostatic voltage of 1.1 V for 180 min at 90 °C bath temperature. To analyze the surface morphology, field emission scanning electron microscopy (FESEM) was used and the results revealed that while a small amount of boron resulted in smoother surface, a little more incorporation of boron changed the surface morphology to dandelion-like shaped rods on the whole surface. By using X-ray diffraction (XRD) analysis, the crystal structures of the films were detected and the preferred orientation of the ZnO, which exhibited polycrystalline and hexagonal wurtzite structure, changed with B doping. For the estimation of the optical band gap of obtained films, UV-Vis diffuse reflectance spectra (DRS) of the films were taken at room temperature and these data were applied to the Kubelka-Munk function. The optical band gap of ZnO narrowed due to incorporation of B, which was confirmed by red-shift.

[1] PEKSU E., KARAAGAC H., J. Nanomater., 2015 (2015), 16012.

[2] CAGLAR M., GORGUN K., J. Nanoelectron. Optoelectron., 11 (2016), 769.

[3] XIONG C., YAO R., Optik, 126 (2015), 1951.

[4] CAGLAR Y., ARSLAN A., ILICAN S., HUR E., AKSOY S., CAGLAR M., J. Alloy. Compd., 574 (2013), 104.

[5] RUZGAR S., AKSOY S., J. Mater. Electron. Devices, 1 (2015), 38.

[6] CAGLAR Y., CAGLAR M., ILICAN S., AKSOY S., YAKUPHANOGLU F., J. Alloy. Compd., 621 (2015), 189.

[7] YE W., DENG J., WANG X., CUI L., Appl. Surf. Sci., 390 (2016), 831.

[8] MAZIARZ W., RYDOSZ A., WYSOCKA K., PISARKIEWICZ T., Mater. Sci.-Poland, 32 (2014), 176.

[9] ATES T., TATAR C., YAKUPHANOGLU F., Sensor. Actuat. A-Phys., 190 (2013) 153.

[10] KERLI S., ALVER U., TANRIVERDI A., AVAR B., Crystallogr. Rep., 60 (2015), 946.

[11] YU C.C., HSU Y.T., LEE S.Y., LAN W.H., KUO H.H., SHIH M.C., FENG D.J.Y., HUANG K.F., Jpn. J. Appl. Phys., 52 (2013), 1.

[12] GANDLA S., GOLLU S. R., SHARMA R., SARANGI V., GUPTA D., Appl. Phys. Lett., 107 (2015), 152102.

[13] CAGLAR M., ILICAN S., CAGLAR Y., YAKUPHANOGLU F., J. Alloy. Compd., 509 (2011), 3177.

[14] ILICAN S., YAKUPHANOGLU F., CAGLAR M., CAGLAR Y., J. Alloy. Compd., 509 (2011), 5290.

[15] IZAKI M., KATAYAMA J., J. Electrochem. Soc., 147 (2000), 210.

[16] ISHIZAKI H., IMAIZUMI M., MATSUDA S., IZAKI M., ITO T., Thin Solid Films, 411 (2002), 65.

[17] CALNAN S., RIEDEL W., GLEDHILL S., STANNOWSKI B., STEINER L.M.C., SCHLATMANN R., Thin Solid Films, 594 (2015), 215.

[18] TSIN F., THOMERE A., BRIS A.L., COLLIN S., LINCOT D., ROUSSET J., ACS Appl. Mater. Inter., 8 (2016), 12298.

[19] BARRET C.S., MASSALSKI T.B., Structure of Metals, Pergamon Press, Oxford, 1980.

[20] PAWAR B.N., JADKAR S.R., TAKWALE M.G., J. Phys. Chem. Solids, 66 (2005), 1779.

[21] CULLITY B.D., STOCK S.R., Elements of X-ray Diffraction, 2nd Ed., Prentice-Hall, Inc., New Jersey, 2001.

[22] MAO C., FANG L., ZHANG H., LI W., WU F., QIN G., RUAN H., KONG C., J. Alloy. Compd., 676 (2016), 135.

[23] SENOL S.D., OZTURK O., TERZIOGLU C., Ceram. Int., 41 (2015), 11194.

[24] TSAY C.-Y., HSU W.-T., Ceram. Int., 39 (2013), 7425.

[25] GAUDON M., TOULEMONDE O., DEMOURGUES A., Inorg. Chem., 46 (2007), 10996.

[26] MURPHY A.B., Sol. Energ. Mat. Sol. C., 91 (2007), 1326.

Journal Information

IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794

CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 11
PDF Downloads 113 113 7