Synthesis and characterization of indium tin oxide nanoparticles via reflux method

Open access

Abstract

Synthesis of indium tin oxide (ITO) nanoparticles by reflux method without chlorine contamination at different pHs, temperatures, solvents and concentrations has been studied. Indium chloride, tin chloride, water, ethanol and Triton X-100 were used as starting materials. Structure, size, surface morphology and transparency of indium tin oxide nanoparticles were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV-Vis spectrophotometry. XRD patterns showed that 400 °C is the lowest temperature for synthesis of ITO nanoparticles because metal hydroxide does not transform to metal oxide in lower temperature. FT-IR results showed the transformation of hydroxyl groups to oxide. SEM images showed that pH is the most important factor affecting the nanoparticles size. The smallest nanoparticles (40 nm) were obtained at pH = 8.8. The size of crystallites was decreased by lowering of concentration (0.025 M).

[1] GAO Y., ZHAO G., DUAN Z., REN Y., Mater. Sci.- Poland, 32 (2014), 66.

[2] LIU Y., ŠTEFANI´C G., RATHOUSKY J., HAYDEN O., BEIN T., FATTAKHOVA-ROHLFING D., Chem. Sci., 3 (2012), 2367.

[3] DOMARADZKI J., KACZMAREK D., DRABCZYK K., PANEK P., Mater. Sci.-Poland, 33 (2015), 363.

[4] RAJABI N., HESHMATPOUR F., MALEKFAR R., Mater. Sci.-Poland, 32 (2014), 102.

[5] SHI J., SHEN L., MENG F., LIU Z., Mater. Lett., 182 (2016), 32.

[6] POHL A., DUNN B., Thin solid films, 515 (2006), 790.

[7] SONG S., YANG T., LIU J., XIN Y., LI Y., HAN S., Appl. Surf. Sci., 257 (2011), 7061.

[8] QIANG X.B., KANG F.R., BIN Y., YONG D., Trans. Nonferrous Met. Soc. China, 20 (2010), 643.

[9] ZHANG D., TAVAKOLIYARAKI A., WUB Y., VAN SWAAIJ R.A., ZEMAN M., Energy Procedia, 8 (2011), 207.

[10] ZHANG H., YE F., LIU L., XU H., SUN C., J. Alloys Compd., 504 (2010), 171.

[11] MEHTA V., COOPER J., J. Power Sources, 114 (2002), 32.

[12] XU S., SHI Y., Sens. Actuat. B., 143 (2009), 71.

[13] PATEL N.G., PATEL P.D., VAISHNAV V.S., Sens. Actuat. B., 96 (2003), 180.

[14] PATEL N.G., MAKHIJA K.K., PANCHAL C.J., Sens. Actuat. B., 21 (1994), 193.

[15] PATEL N.G., MAKHIJA K.K., PANCHAL C.J., DAVE D.B., VAISHNAV V.S., Sens. Actuat. B., 23 (1995), 49.

[16] LUO S., OKADA K., KOHIKI S., TSUTSUI F., SHIMOOKA H., SHOJI F., Mater. Lett., 63 (2009), 641.

[17] DELACY G., LACEY S., ZHANG D., VALDES E., HOANG K., Mater. Lett., 117 (2014), 108.

[18] KYU-JEON M., KANG M., Mater. Lett., 62 (2008), 676.

[19] XIE-BIN Z., TAO J., GUAN-ZHOU Q., BAI-YUN H., Trans. Nonferrous Met. Soc. China, 19 (2009), 752

[20] WOOD S., SAMSON I., Ore. Geol. Rev., 28 (2006), 57.

[21] JIANG L., SUN G., ZHOU Z., SUN S., WANG Q., YAN S., LI H., TIAN J., GUO J., ZHOU B., XIN Q., J. Phys. Chem. B., 109 (2005), 8774.

[22] YU D., YU W., WANG D., QIAN Y., Thin solid films, 419 (2002), 166.

[23] THOMAS HE Y., WANG J., TOKUNAGA T., J. Nanapart. Res., 10 (2008), 321.

[24] KIM K.Y., PARK S.B., Mater. Chem. Phys., 86 (2004), 210.

[25] SILVA G.M, FARIA DE E.H., NASSAR E.J., CIUFFI K.J., CALEFI P.S., Quim. Nova., 35 (2012), 473.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 231 22
PDF Downloads 133 133 10