Preparation and electrical properties of polyimide/carbon nanotubes composites

Open access


Polyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the formation of a percolative path of the conducting network through the sample for a concentration corresponding to the percolation threshold. The high dielectric constant at a low frequency (1 kHz) is thought to originate from the space charge polarization mechanism. I-V characteristics of these devices indicate a significant increase in current with an increase in multi-walled carbon nanotube concentration in the composites. The SEM images show improved dispersion of MWCNTs in the PI matrix; this is due to the strong interfacial interactions.

[1] WEI B.Q., VAJTAI R., AJAYAN P.M., Appl. Phys. Lett., 79 (2001), 1172.

[2] UPADHYAY A.N., TIWARI R.S., SINGH K., Adv. Mater. Lett., 6 (2015), 1098.

[3] KHARE R., BOSE S., J. Miner. Mater. Character. Eng., 4 (2005), 31.

[4] NAYAK L., RAHAMAN M., ALDALBAHI A., CHAKI T.K., KHASTGIR D., Poly. Eng. Sci., (2016). DOI 10.1002/pen.24412.

[5] ZHANG Q., LI J., ZHAO X., CHEN D., Poly. Int., 58 (2009), 557.

[6] CHEN Y., LIN B., ZHANG X., WANG J., LAI CH., SUN Y., LIUAB Y., YANGA H., J. Mater. Chem., 2 (2014), 14118.

[7] PARK S., CHAE S., RHEE J., KANG S., Bull. Korean Chem. Soc., 31 (2010), 2279.

[8] MO T., WANG H., CHEN S., YEH Y., Poly. Compos., 29 (2008), 451.

[9] JIANG X., BIN Y., MATSUO M., Poly., 46 (2005), 7418.

[10] THUAU D., KOUTSOS V., CHEUNG R., J. Vac. Sci. Technol., 27 (2009), 3139.

[11] OUNAIES Z., PARK C., WISE K.E., SIOCHI E.J., HARRISON J.S., Comp. Sci. Technol., 63 (2003), 1637.

[12] ZHANG Y., YU L., ZHAO L., TONG W., HUANG H., KE S., CHAN H. L. W., J. Electron. Mater., 41 (2012), 2281.

[13] KIM B.S., Macromol. Res., 15 (2007), 357.

[14] YUEN S., MA C. M., CHIANG C., LIN Y., TENG C., J. Poly. Sci. Poly. Chem., 45 (2007), 3349.

[15] QU L., LIN Y., HILL D. E., ZHOU B., WANG W., SUN X., KITAYGORODSKIY A., SUAREZ M., CONNELL J. W., ALLARD L. F., SUN Y., Macromol., 37 (2004), 6055.

[16] LIM J., SHIN D.G., YEO H., GOH M., KU B., YANG C., LEE D.S., HWANG J., PARK B., YOU N., J. Poly. Sci. Poly. Phys., 52 (2014), 960.

Journal Information

IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794

CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 210 210 15
PDF Downloads 111 111 11