Thermal conductivity of silicon doped by phosphorus: ab initio study

Open access

Abstract

An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molecular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors and isolators.

[1] LIDOW A., STRYDOM J., ROOIJ DE M., REUSCH D., GaN Transistors for Efficient Power Conversion, Wiley, 2015.

[2] BORGES R., Gallium nitride electronic devices for highpower wireless applications, Application Notes, RF Design, 2001, p. 72.

[3] BERNARDONI M., DELMONTE N., MENOZZI R., CS Mantech Conference, Boston, USA, April 23 - 26, 2012.

[4] PEREZ J.A.F., Thermal Study of a GaN-Based HEMT, PhD Dissertation, University of Notre Dame Indiana, 2012.

[5] VISALLI D., Optimization of GaN-on-Si HEMTs for High Voltage Applications, PhD Dissertation, Katholieke Universiteit Leuven, 2011.

[6] FORNETTI F., Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications, PhD Dissertation, University of Bristol, 2010.

[7] MACFARLANE D.J., Design and fabrication of Al- GaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014.

[8] VITANOV S., PALANKOVSKI V., MAROLDT S., QUAY R., Solid-State Electron., 54 (2010), 1105.

[9] STACKHOUSE S., STIXRUDE L., Rev. Mineral. Geochem., 71 (2010), 253.

[10] GREEN M.S., J. Chem. Phys., 22 (1954), 398.

[11] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.

[12] KUBO R., Rep. Prog. Phys., 29 (1966), 255.

[13] MULLERPLATHE F.J., Chem. Phys., 106 (1997), 6082.

[14] ZIMAN J.M., Electrons and Phonons, Oxford University Press, 2001.

[15] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999), 1758.

[16] BLÖCHL P.E., Phys. Rev. B, 50 (1994), 17953.

[17] RÓG T., MURZYN K., HINSEN K., KNELLER G.R., J. Comput. Chem., 24 (2003), 657.

[18] KAERGER J., GRINBERG F., HEITJANS P., Diffusion fundamentals, Leipzig University, 2005.

[19] ROHLF J.W., Modern Physics from A to Z, John Wiley & Sons Inc, 1994.

[20] BLATT F.J., Modern Physics, McGraw-Hill, New York, 1992.

[21] KLEMENS P.G., GELL M., Mat. Sci. Eng. A, 245 (1998), 143.

[22] TAMURA S., SHIELDS J.A., WOLFE J.P., Phys. Rev. B, 44 (1991), 3001.

[23] NIKANOROV S.P., BURENKOV YU.A., STEPANOV A.V., Sov. Phys. Solid State, 13 (1971), 2516.

[24] OKHOTIN A.S., PUSHKARSKII A.S., GORBACHEV V.V., Thermophysical Properties of Semiconductors, "Atom" Publ. House, 1972. (in Russian).

[25] DESAL P.D., J. Phys. Chem. Ref. Data, 15 (1986), 967.

[26] SHANKS H.R., MAYCOCK P.D., SIDLES P.H., DANIELSON G.C., Phys. Rev., 130 5 (1963), 1743.

[27] GLASSBRENNER C.J., SLACK G.A., Phys. Rev., 134 (1964), A1058.

[28] LEE Y., HWANG G.S., Phys. Rev. B, 86 (2012), 075202.

[29] ASHEGHI M., KURAB K., KASNAVI R., GOODSON K.E., J. Appl. Phys., 91 (2002), 5079.

[30] JIN J.S., J. Mechan. Sci.Technol., 28 (2014), 2287.

[31] XIEL J., LEE C., WANG M.-F., LIU Y., FENG H., J. Micromech. Microeng., 19 (2009), 125029.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 26
PDF Downloads 104 104 16