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Thermal conductivity of silicon doped by phosphorus:
ab initio study∗
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An original approach to the theoretical calculations of the heat conductivity of crystals based on the first principles molec-
ular dynamics has been proposed. The proposed approach exploits the kinetic theory of phonon heat conductivity and permits
calculating several material properties at certain temperature: specific heat, elastic constant, acoustic velocity, mean phonon
scattering time and coefficient of thermal conductivity. The method has been applied to silicon and phosphorus doped silicon
crystals and the obtained results have been found to be in satisfactory agreement with corresponding experimental data. The
proposed computation technique may be applied to the calculations of heat conductivity of pure and doped semiconductors
and isolators.
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1. Introduction
Silicon crystals doped with phosphorus, alu-

minium, boron, or arsenic are the materials fre-
quently used in electronics. The problem of heat
removal from the functional elements is crucial in
the devices of high power electronics [1]. From
this viewpoint, the thermal characteristics of cor-
responding materials and interfaces between them
are therefore of great interest [2–8]. That is why
the choice of adequate methods for the calculation
of thermal conductivity and related values is signif-
icant for resolving different materials problems in
this field.

Numerous theoretical techniques for determin-
ing lattice thermal conductivity have been reported
in the literature and applied to a wide range of
materials [9]. The molecular dynamics (MD) tech-
niques may be divided into two main groups: (1)
equilibrium and (2) non-equilibrium methods. In
an equilibrium MD simulation, the system under
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investigation has a constant average temperature
and an average heat flux of zero [9]. However,
at each instant of time, a finite heat flux exists
due to instantaneous fluctuations in temperature.
The popular Green-Kubo method [10, 11], based
on the general fluctuation-dissipation theorem [12],
relates lattice thermal conductivity of a system to
the time required for such fluctuations to dissipate.

In the non-equilibrium MD methods, a heat
flux through the structure under study is applied
and the temperature gradient that develops as a
consequence of the imposed flux is determined.
For example, in the version of the reverse non-
equilibrium molecular dynamics (RNEMD), the
heat flux is introduced by continuously transferring
energy from a “cold” slab, located in the middle of
the simulation cell, to the “hot” slabs, located at the
ends of the simulation cell. This is accomplished by
exchanging the velocities of the hottest atom in the
cold slab with the coldest atom in the hot slab [13].

We present the results of ab initio equilibrium
molecular dynamics study of the thermal conduc-
tivity in pure silicon and phosphorus doped sili-
con crystals. An original approach to calculation
of the values related to the thermal conductivity
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of materials by using the ab initio molecular
dynamics method (AIMD), based on the den-
sity functional theory (DFT), has been proposed.
The method permits calculating the specific heat,
acoustic velocity, mean phonon scattering time and
coefficient of thermal conductivity of the materi-
als at different temperatures. This approach uses
the relation for the thermal conductivity coeffi-
cient derived from the kinetic theory of phonon
propagation and is based on the calculations of
standard molecular dynamics values: root mean-
square atomic deviation, mean-square atomic dis-
placement and spectral density of states. Results
of the thermal conductivity characteristics in the
obtained silicon and phosphorous doped silicon
crystals have been found to be in good qualitative
and satisfactory quantitative agreement with corre-
sponding reference data.

2. Method of computations
According to the kinetic theory of phonon trans-

port [14], the coefficient of thermal conductivity
κ is proportional to the mean phonon scattering
time τs:

κ = ρCv2
τs/3 (1)

where ρ is density of a material, C is the specific
heat, and v is a mean acoustic phonon velocity.
Three temperature dependent values, C, v, and τs
may be determined separately from the results of
ab initio MD calculations.

The AIMD simulations of silicon have been
performed in the framework of the DFT using
the VASP package [15]. The projector augmented-
wave (PAW) method with a plane waves cutoff en-
ergy of 300 eV was employed [15, 16], together
with the corresponding pseudopotentials. For the
exchange and correlation terms, the gradient cor-
rected Perdew-Burke-Ernzerhof (PBE) functional
was used. Taking the relatively large diamond su-
percells 3 × 3 × 3 of Si into account (3a = 16.29 Å)
only the Γ point in the Brillouin zone was con-
sidered for geometry optimization. The optimized
structures were used as an input for the computa-
tion of MD trajectories.

The AIMD calculations of Si were performed
in the microcanonical NVE ensemble for differ-
ent temperatures and initially optimized supercell
3 × 3 × 3 at the temperature T = 0 K. Most results
of the AIMD calculations have been obtained for
the simulation time up to 15 ps with the time step of
1.5 fs. For post-processing analyses, the post MD
calculation program nMoldyn 3.0 was used [17].

Using the obtained MD-trajectories, the mean-
square displacements (MSD) of atoms were calcu-
lated by the following relation:

σ
2(t) =

1
N

N

∑
α=1

wα

〈
d2

α(t)
〉

(2)

where,
〈
d2
α(t)
〉

denotes the MSD for atoms of α-
type, dα(t) = Rα(t) – Rα(0), wα is the weight coef-
ficient and t is the time. The velocity autocorrela-
tion functions (VACF):

Fvv(t) =
1

3N

N

∑
α=1

wα 〈vα(0) · vα(t)〉 (3)

and the spectral density of states (SDOS) - G(ω)
was calculated as Fourier transformation of Fvv(t):

G(ω) =

∞∫
0

exp[−iωt]Fvv(t)dt (4)

According to the latter relation:

G(0) = G0 =

∞∫
0

Fvv(t)dt = D (5)

that is the diffusion coefficient D of atoms [17].
In the case of relatively slow time dependent de-
crease of the amplitude of VACF (equation 3), cor-
responding to a large mean phonon scattering time
τs, the time of MD simulation should be suffi-
ciently large to obtain reliable values of G0 (G at
ω = 0) using the relation 5.

The other relation often used for calculations of
the diffusion coefficient D from MD studies is the
Einstein-Smoluchowski relation for spatial atomic
diffusion:

σ
2 = 6Dt (6)
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where t is the MD simulation time [18]. In the
present study of solid silicon, where the observed
diffusion of atoms is negligible, we have used the
latter relation to obtain the mean phonon scattering
time τs:

τs =
σ2

a

6G0
(7)

where the meaning of the value σa
2 is explained

in the following chapter. Thus, the key point of
the present approach is the use of the Einstein-
Smoluchowski relation 6 for diffusion (but with the
special value σa

2) to the calculation of phonon scat-
tering time τs, which afterwards may be used for
calculations of the corresponding thermal conduc-
tivity coefficient from the relation 1.

3. Results and discussion
By performing two sets of MD calculation cor-

responding to two temperatures T1 and T2, we can
evaluate the specific heat C:

C =
E2−E1

m(T2−T1)
(8)

where E1 and E2 are the corresponding total ener-
gies and m is the mass of a crystal supercell.

The acoustic velocity v may be calculated from
the elastic stiffness c and density ρ of a crystal ac-
cording to the know relation:

v =
√

c
ρ

(9)

To estimate the elastic stiffness c from the re-
sults of MD calculations one can use presentations
of one atom energy in the forms of thermal energy
(A), 3kBT/2, and mechanical energy (B) (kinetic
plus potential energies) of the corresponding effec-
tive oscillator, kx2/2 + mv2/2 = kx2. Here, kB and
k are correspondingly Boltzmann and force con-
stants. The characteristic atomic deviation x may
be exchanged by the root mean square deviation
(RMSD) R obtained from MD calculations at a
temperature T:

3kBT
2

= kR2 (10)

The force constant k, if obtained, may be used
for estimation of the elastic stiffness c, according
to the relation:

cA = kL (11)

resulted from the definitions of k and c values (A
is an area and L is a length of the model paral-
lelepiped containing one effective oscillator). For
silicon diamond structure of the cubic symmetry
we use A = L2. For L value, one can take the near-
est neighbor distance dSi−Si = L = 2.35 Å, that is
reasonable in terms of the oscillator model used.

Thus, on the basis of MD calculations per-
formed at different temperatures there is a possibil-
ity to estimate the temperature dependent specific
heat C(T), the elastic stiffness c(T) (equation 12)
and the acoustic velocity v(T) (equation 13):

c =
3kBT
2R2L

(12)

v =

√
C
ρ
=

√
3kBT

2LR2ρ
(13)

The MSD σ2 (σ2 = 2R2) of Si as a function
of temperature T is found to be close to the linear
dependence with small positive nonlinearity:

σ
2(T) = −3.77571 ·10−6 (14)

+ 1.17433 ·10−6 ·T+ 6.51337 ·10−11 ·T2

where the magnitude of σ2 is in nm2 units. Ac-
cording to the relation 10 and relation 12, the de-
tected small positive nonlinearity of the depen-
dence σ2(T) 14 is an evidence of small tempera-
ture decrease of the force constant k and elastic
stiffness c of silicon in the temperature range of
0 K to 1000 K.

The temperature dependence G0(T) is a grow-
ing function with a clear positive nonlinearity
(Fig. 1). Having the values σ2 and G0 calculated,
we have supposed that the corresponding mean
phonon scattering time τs, necessary for calcula-
tion of the coefficient of thermal conductivity κ (1),
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may be estimated from relation 7, which is simi-
lar to the Einstein-Smoluchowski relation for dif-
fusion 6. In the present case, no diffusion of Si
atoms takes place and therefore the value G0 re-
flects the deviation of crystal structure from the per-
fect atomic distribution caused by the finite tem-
perature and imperfections. Using the above sup-
position, we have calculated the dependence τs(T)
using the dependences σ2(T) and G0(T) obtained
from the AIMD calculations. Afterwards, the cor-
responding temperature dependence of the thermal
conductivity coefficient κ(T) was calculated using
the relation 1. We have found that the dependence
κ(T) is a decreasing function, similar to the ex-
perimental one, but the calculated absolute value
|∆κ/∆T| is several times smaller than the corre-
sponding experimental magnitude.

Fig. 1. Temperature dependence of SDOS G0(T) of sil-
icon.

On the other hand, very close similarity of the
calculated and experimental temperature depen-
dences of κ(T) for silicon has been obtained when
the temperature independent value of MSD, σa

2

was used for calculation of the scattering time τs
using the relation 7. By comparing the calculation
and experimental data on silicon we have found
that the corresponding constant value of σa

2 should
be taken as MSD at the temperature T = Ta cor-
responding to the acoustic frequency νa in accor-
dance to the Debye relation [19, 20]:

hνa = kBTa (15)

The value νa, in turn, was taken close to
the high frequency edge of the acoustic branch,

νa = 7.4 THz ↔ 246.8 cm−1, related to the
SDOS G(ν) (Fig. 2). This choice is grounded on
the known fact that the phonons from the acous-
tic branches of the phonon dispersion relation
ω(q) transfer mainly the heat in solids [21]. Es-
pecially, the acoustic velocity v, taken in the re-
lation 1, is calculated as the group acoustic ve-
locity v = (dω/dq)q = 0 at q = 0. The velocities
dω/dq of the optical branches are much smaller.
Thus, acoustic vibrations in the frequency range of
0 THz to 7.4 THz have been taken into account
for estimation of the corresponding characteristic
temperature Ta, which then has been used for cal-
culation of the corresponding value σa

2. From the
viewpoint of the known inverse proportional de-
pendence of the mean phonon scattering time τs
and temperature T of a material and taking into
account similar dependence of the inverse value
G0
−1(T) obtained (Fig. 1), it looks reasonable that

the value σa
2, used here for calculation of the

phonon scattering time τs by the relation 7, should
not be a temperature growing function, like the
dependence σ2(T).

Fig. 2. SDOS as a function of frequency ν for silicon at
different temperatures.

We have found that the temperature dependence
of the coefficient of silicon thermal conductivity
κ(T) in the temperature range 300 K to 1000 K is
determined mainly by the temperature dependence
of the mean phonon scattering time τs(T). The de-
pendences on temperature of other values from the
relation 1, ρ(T), C(T) and v(T), are much smaller
in comparison to that for τs(T).
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The distributions G(ν) for different temper-
atures are similar (Fig. 2) and are in good
agreement with the reference data for silicon [22].
However, a clear low frequency shift is observed
with increasing temperature on the normalized de-
pendences G(ν)

Gmax
plot vs. ν (Fig. 3). The observed

temperature dependent shifts of G(ν)
Gmax

distributions
indicate the decrease of the force constant k and
elastic stiffness c of the material because of the
known relation for the corresponding resonance an-
gular frequency, ω0

2 = k/m. As a consequence,
the elastic stiffness c is expected to be a slightly
decreasing function of temperature T. This expec-
tation has been confirmed by calculations using
the corresponding MSD data and the relation 10,
relation 11 and relation 12. We have found that
the small decrease in the elastic stiffness c11 from
c11

(300 K) = 151 GPa to c11
(1000 K) = 141 GPa with

temperature, is in a good agreement with the ref-
erence data [23] (difference is about 10 %). Tak-
ing into account also the temperature decrease of
silicon density ρ (near several percent) and the re-
lation 9, one can expect almost 7 % temperature
decrease of the corresponding longitudinal acous-
tic velocity v in the range of 300 K to 1000 K.

Fig. 3. Normalized SDOS G/Gmax as a function of fre-
quency ν for silicon at different temperatures.

The temperature dependence of specific heat
C(T) of silicon at a constant volume V, calcu-
lated with using the relation 8, is found to be
a slightly increasing function in the range of
300 K to 1000 K, that is in satisfactory agree-
ment (up to 30 %) with corresponding experimental

observations for the specific heat at a constant
pressure [24, 25].

According to the Debye relation 15, the cut-
off acoustic frequency of silicon νa

(1) = 7.4 THz
corresponds to the temperature Ta = 355 K.
According to the relation 14, this tempera-
ture Ta corresponds to the value of MSD
σ2(Ta) = σa

2 = 4.213·10−4 nm2, which is used
for the calculation by equation 7 of the tempera-
ture dependent mean phonon scattering time τs

(1)

for νa
(1) = 7.4 THz (Fig. 4). For the cutoff acous-

tic frequency νa
(2) = 6.0 THz the value σa

2 is equal
to σa

2 = 3.416·10−4 nm2 and the corresponding
mean phonon scattering time τs

(2) is smaller than
τs

(1) for νa
(1) = 7.4 THz (Fig. 4). Taking into ac-

count the above analysis of the MD data for silicon
and the relation 1, one can conclude that the ex-
pected temperature changes of the thermal conduc-
tivity coefficient κ are caused by the correspond-
ing changes, mainly of the mean phonon scattering
time τs. This is confirmed by the temperature de-
pendences τs(T) (Fig. 4) calculated using the rela-
tion 7. The values of τs decrease more than 4 times
when temperature increases from 300 K to 1000 K
(Fig. 4).

Fig. 4. Temperature dependences of mean phonon scat-
tering time τs(T) of silicon calculated for two
values of cutoff frequency νa

(1) = 7.4 THz and
νa

(2) = 6.0 THz.

The calculated temperature dependence of the
coefficient of thermal diffusivity Dτ(T):

Dτ =
1
3

v2
τs (16)
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obtained for pure silicon (Fig. 5) is found to be
close to the reference data [26], that supports
robustness of the present approach for calculations
of the materials properties related to the thermal
conductivity. On the basis of the thermal diffusiv-
ity data obtained for silicon (Fig. 5) and using the
corresponding reference values for the specific heat
(C = 700 J·kg−1·K−1 [22]) one can calculate by
the relation 1 the coefficients of thermal conduc-
tivity κ1 = 171.2 W·m−1·K−1 (νa

(1) = 7.4 THz)
and κ2 = 138.0 W·m−1·K−1 (νa

(1) = 6.0 THz) at
the temperature of 300 K, which are close to the
reference data [27].

Fig. 5. Temperature dependences of diffusivity Dτ(T)
for silicon: squares experiment [26], cir-
cles calculations for the cutoff frequency
νa = 7.4 THz, triangles calculations for the cut-
off frequency νa = 6.0 THz. Sound velocity
v = 8430 ms−1 [23] was taken for both calcu-
lated dependences.

We have applied the presented approach to the
calculations of thermal conductivity characteristics
of phosphorus doped silicon crystals. Five different
concentrations of phosphorus atoms in five silicon
based samples have been created and studied: 1, 3,
9, 18, and 27 silicon atoms were subsequently sub-
stituted by phosphorus in the 3 × 3 × 3 supercell of
silicon (216 atoms). The phosphorus atoms substi-
tuted the silicon ones in different places of the su-
percell, thus a homogeneous distribution of phos-
phorus has been ensured. Similar MD calculations
(like in the case of the undoped silicon) have been
performed for these five phosphorus doped silicon
samples at two temperatures, 300 K and 700 K,

which enabled us to calculate the heat conductiv-
ity characteristics of these materials.

An increase of the phosphorus atoms concen-
tration leads to several distinct changes in the fre-
quency distributions of SDOS G(ν) (Fig. 6): (1)
the low frequency shifts of G(ν) dependences; (2)
the opposite character of SDOS changes in the fre-
quency regions of acoustic (around 4 THz) and op-
tical (around 14 THz) vibration bands as a result of
the change in relative phosphorus atoms concentra-
tion; (3) the increase of SDOS G0 (G at ν = 0).
Similar changes take place for the temperature
of 700 K.

Fig. 6. SDOS G(ν) of silicon (Si216) and phospho-
rus doped silicon (P1Si215, P3Si213, P9Si207,
P18Si198, P27Si189) at the temperature of 300 K.

An increase of the relative phosphorus concen-
tration nPr (nPr = NP/(NP + NSi)) in the sam-
ples studied in the range of 0 to 0.125 leads
to the increase of MSD σ2 and SDOS G0 val-
ues (Fig. 7). The corresponding relative increase
of SDOS, ∆G0/G0 = 0.65, is more than three
times larger than the relative increase of MSD,
∆(σ2)/σ2 = 0.19. If we take into account the rela-
tion 7 and relation 1, these results substantiate the
decreasing dependence of the coefficient of thermal
conductivity κ(nP) (Fig. 8). It is remarkable that
pure silicon is characterized by much smaller val-
ues of G0 and moderately smaller σ2 (Fig. 7) than
similar values for the phosphorus doped silicon ma-
terials in the range of 0.0046 to 0.125 of nPr. One
therefore may claim that an increase in the phos-
phorus concentration nPr in the range of 0 to 0.0046
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should result in a large increase of G0 and moder-
ate increase of σ2 in the doped silicon in compar-
ison to similar characteristics for the perfect struc-
ture of undoped Si. As a result, the largest decrease
of the dependences τ(nPr) and κ(nPr) is expected in
the range of nPr from 0 to 0.0046. Another feature
of the obtained results is that the calculated value
of G0 for the undoped silicon at the temperature of
1000 K (Fig. 1) is found to be close to the simi-
lar value for the heavily phosphorus doped silicon
(nPr = 0.125) at the temperature of 300 K (Fig. 7).
One, therefore, can compare two effects (temper-
ature increase and phosphorus doping) leading to
similar changes in the heat conductivity values.

Fig. 7. Dependencies of SDOS G0 (left scale) and MSD
σ2 (right scale) of phosphorus doped silicon as
a function of the relative phosphorus content nPr
at the temperature of 300 K.

The calculated dependence κ(nP) (Fig. 8)
agrees satisfactorily with the known ref-
erence data related to the study of the
most heavily phosphorus doped silicon,
κ(nP = 5 × 1020 cm−3) = 57 W·m−1·K−1 [28].
Our results are not in contradiction also with the
heat conductivity studies of less heavily phos-
phorus doped Si [29, 30]. Besides, the obtained
values of κ (Fig. 8) may be comparable with the
coefficients of thermal conductivity in the range of
38 W·m−1·K−1 – 29 W·m−1·K−1 obtained for the
surface doping of silicon by phosphorus in the dop-
ing range of 4·1015 cm−2 to 10 × 1015 cm−2 [31].

Fig. 8. Dependencies of the calculated coefficient of
thermal conductivity of phosphorus doped sili-
con as a function of phosphorus doping concen-
tration κ(nP) at the temperatures of 300 K (left
scale) and 700 K (right scale). The open square
point corresponds to the experimental thermal
conductivity of the heavily phosphorus doped
silicon at the temperature of 300 K [28].

4. Conclusions

1. The relation similar to the Einstein-
Smoluchowski equation for atomic dif-
fusion in solids may be applied for the
calculation of mean phonon scattering
time τs, when the temperature independent
mean squared displacement σa

2 is used,
the value of which is determined by the
atomic displacements taking place in the
propagation of acoustic waves in the studied
material.

2. Using the results of ab initio equilibrium
molecular dynamics study of pure silicon
and phosphorus doped silicon crystals ob-
tained at different temperatures and phos-
phorus concentrations, the new approach for
calculation of the mean phonon scattering
time τs and coefficient of thermal conduc-
tivity κ of the materials has been proposed.

3. The temperature dependence of the coeffi-
cient of thermal conductivity κ(T) of pure
silicon and phosphorus content dependence
κ(nP) of p-doped Si are determined mainly
by the corresponding dependences of den-
sity of vibration states G0(T) and G0(nP) at
zero vibration frequency (ν = 0).



724 B. ANDRIYEVSKY et al.

Acknowledgements
The calculations were performed in the supercomputer

centers ICM of Warsaw University in the framework of the
project G26-3 and WCSS of Wrocław University of Science
and Technology.

References
[1] LIDOW A., STRYDOM J., ROOIJ DE M., REUSCH D.,

GaN Transistors for Efficient Power Conversion, Wiley,
2015.

[2] BORGES R., Gallium nitride electronic devices for high-
power wireless applications, Application Notes, RF De-
sign, 2001, p. 72.

[3] BERNARDONI M., DELMONTE N., MENOZZI R., CS
Mantech Conference, Boston, USA, April 23 – 26, 2012.

[4] PEREZ J.A.F., Thermal Study of a GaN-Based HEMT,
PhD Dissertation, University of Notre Dame Indiana,
2012.

[5] VISALLI D., Optimization of GaN-on-Si HEMTs
for High Voltage Applications, PhD Dissertation,
Katholieke Universiteit Leuven, 2011.

[6] FORNETTI F., Characterisation and Performance Op-
timisation of GaN HEMTs and Amplifiers for Radar
Applications, PhD Dissertation, University of Bristol,
2010.

[7] MACFARLANE D.J., Design and fabrication of Al-
GaN/GaN HEMTs with high breakdown voltages, PhD
Dissertation, School of Engineering, University of Glas-
gow, 2014.

[8] VITANOV S., PALANKOVSKI V., MAROLDT S.,
QUAY R., Solid-State Electron., 54 (2010), 1105.

[9] STACKHOUSE S., STIXRUDE L., Rev. Mineral.
Geochem., 71 (2010), 253.

[10] GREEN M.S., J. Chem. Phys., 22 (1954), 398.
[11] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.
[12] KUBO R., Rep. Prog. Phys., 29 (1966), 255.
[13] MULLERPLATHE F.J., Chem. Phys., 106 (1997), 6082.

[14] ZIMAN J.M., Electrons and Phonons, Oxford Univer-
sity Press, 2001.

[15] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999),
1758.

[16] BLÖCHL P.E., Phys. Rev. B, 50 (1994), 17953.
[17] RÓG T., MURZYN K., HINSEN K., KNELLER G.R., J.

Comput. Chem., 24 (2003), 657.
[18] KAERGER J., GRINBERG F., HEITJANS P., Diffusion

fundamentals, Leipzig University, 2005.
[19] ROHLF J.W., Modern Physics from A to Z, John Wiley

& Sons Inc, 1994.
[20] BLATT F.J., Modern Physics, McGraw-Hill, New York,

1992.
[21] KLEMENS P.G., GELL M., Mat. Sci. Eng. A, 245

(1998), 143.
[22] TAMURA S., SHIELDS J.A., WOLFE J.P., Phys. Rev. B,

44 (1991), 3001.
[23] NIKANOROV S.P., BURENKOV YU.A., STEPANOV

A.V., Sov. Phys. Solid State, 13 (1971), 2516.
[24] OKHOTIN A.S., PUSHKARSKII A.S., GORBACHEV

V.V., Thermophysical Properties of Semiconductors,
"Atom" Publ. House, 1972. (in Russian).

[25] DESAL P.D., J. Phys. Chem. Ref. Data, 15 (1986), 967.
[26] SHANKS H.R., MAYCOCK P.D., SIDLES P.H.,

DANIELSON G.C., Phys. Rev., 130 5 (1963), 1743.
[27] GLASSBRENNER C.J., SLACK G.A., Phys. Rev., 134

(1964), A1058.
[28] LEE Y., HWANG G.S., Phys. Rev. B, 86 (2012), 075202.
[29] ASHEGHI M., KURAB K., KASNAVI R., GOODSON

K.E., J. Appl. Phys., 91 (2002), 5079.
[30] JIN J.S., J. Mechan. Sci.Technol., 28 (2014), 2287.
[31] XIEL J., LEE C., WANG M.-F., LIU Y., FENG H., J.

Micromech. Microeng., 19 (2009), 125029.

Received 2016-10-15
Accepted 2017-12-19


	Introduction
	Method of computations
	Results and discussion
	Conclusions

