Determination of ionic conductivity in the Bi-Si-O and Pb-Si-O glasses

Open access

Abstract

Impedance spectroscopy measurements in various gas atmospheres were carried out in order to explain the doubts about the type of carriers and the mechanism of electrical conductivity in Bi-Si-O and Pb-Si-O glasses. In bismuth silicate glass, a typical ionic conductivity with oxygen ions as charge carriers was observed. The level of electrical conductivity of the glass at 400 °C was 5 × 10-8 S·cm-1, with the activation energy of 1.3 eV and was independent of measuring atmosphere. In the case of lead silicate glasses, the conductivity changed with measuring atmosphere. Two types of charge carriers: oxygen ions and proton ions were postulated. Proton conductivity measured in wet argon at temperature 400 °C was estimated at the level of 4 × 10-8 S·cm-1 while the oxygen ions conductivity in such conditions was 78 × 10-8 S·cm-1. We suggest that both types of charge carriers are transported along the same conduction paths using oxygen defects in the glass structure.

[1] KOHARA S., OHNO H., TAKATA M., USUKI T., MORITA H., SUZUYA K., AKOLA J., PUSZTAI L., Phys. Rev. B, 82 (2010), 134209.

[2] WARREL C.A., HENSHALL T., J. Non-Cryst. Solids, 29 (1978), 283.

[3] KUSZ B., TRZEBIATOWKI K., BARCZY´NSKI R.J., Solid State Ionics, 159 (2003), 293.

[4] LIU L., Z. Phys. B 90 (1993), 393.

[5] WANG P.W., ZHANG L.P., J. Non-Cryst. Solids, 194 (1996), 129.

[6] WITKOWSKA A., RYBICKI J., DI CICCO A., J. Non- Cryst. Solids, 351 (2005), 380.

[7] KUSZ B., Optica Applicata 33 (2003), 141.

[8] GACKOWSKA J., GAZDA M., TRZEBIATOWSKI K., KUSZ B., J. Non-Cryst. Solids, 354 (2008), 4319.

[9] ŁA˛CZKA M., STOCH L., GÓRECKI J., J. Alloys and Compounds, 186 (1992), 279.

[10] STEPIEN R., PYSZ D., KUJAWA I., BUCZYNSKI R., Optical Materials, 35 (2013), 1587.

[11] KUSZ B., TRZEBIATOWSKI K., GAZDA M., MURAWSKI L., J. Non-Cryst. Solids, 319 (2003), 137.

[12] HUGHES K., ISARD J.O., MILNES G.C., Phys. Chem. Glasses, 9 (1968), 43.

[13] STRAUSS S.W., MOORE D.G., HARRISON W.N., RICHARDS L.E., J. Res. Nat. Bur. Stand., 56 (1956), 135.

[14] MENDIRATTA S.K., Phys. Stat. Sol.(A), 93 (1986), 293.

[15] EL-BAYOUMI O.H., MACCRONE R.K., J. American Ceramic Society, 59 (1976), 386.

[16] MILNES G.C., ISARD J.O., Phys. Chem. Glasses, 3 (1962), 157.

[17] ABE Y., HOSONS H., HIKICHI Y., J. Materials Science Letters, 9 (1990), 1443.

[18] PAVLOVA G.A., Izvest. Vysshykh Ucheb. Zavedenii Khim. i Khina. Teknol, 5 (1958), 82.

[19] BOCHENTYN B., WARYCH A., SZREDER N., MIELEWCZYK-GRY´N A., KARCZEWSKI J., PRZE´S NIAK-WELENC M., GAZDA M., KUSZ B., J. Non-Cryst. Solids, 439 (2016), 51.

[20] BOCHENTYN B., KARCZEWSKI J., MIRUSZEWSKI T., KUSZ B., J. Alloys and Compounds, 646 (2015), 1124.

[21] KUSZ B., MIRUSZEWSKI T., BOCHENTYN B., ŁAPI´NSKI M., KARCZEWSKI J., J. Electron. Mater., 45 (2016), 1085.

[22] BOCHENTYN B., KARCZEWSKI J., MIRUSZEWSKI T., KUSZ B., Mat. Chem. Phys., 177 (2016), 353.

[23] BOCHENTYN B., KARCZEWSKI J., MIRUSZEWSKI T., KUSZ B., Mater. Res. Bull., 76 (2016), 195.

[24] ABE Y., TAKAHASI M., Chem. Phys. Lett., 411 (2005), 302.

[25] ABE Y., HOSONO H., OHTA Y., Phys. Rev. B, 38 (1988), 10166.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 13
PDF Downloads 86 86 11