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In this article, the static response of the functionally graded piezoelectric (FGP) plates with piezoelectric layers (sandwich
FGPM) is studied based on the first order shear deformation plate theory. The plate is under mechanical, electrical and thermal
loadings and finite element method is employed to obtain the solution of the equation. All mechanical, thermal and piezoelectric
properties, except Poisson ratio, obey the power law distribution through the thickness. By solving the governing equation,
optimum value of power law index is investigated in each type of loading. The effects of different volume fraction index,
layer arrangements, various boundary conditions and different loading types, are studied on the deflection of FGPM plate. It
is inferred that, the correlations between the deflection, power law index and layer arrangement are completely different in the
mechanical and thermal loading and the optimum value of the power law index should be selected in each case separately. This
optimum values can be used as a design criterion to build a reliable sensors and actuators in thermal environments.
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1. Introduction

In recent decades, the multilayered piezoelec-
tric structures have been developed for use in dif-
ferent fields of engineering applications, such as
sensors and actuators, health monitoring and vi-
bration control [1–3]. Because of material prop-
erties of these structures at the layers interfaces,
some problems such as residual stresses and de-
lamination may occur in high temperature envi-
ronments [4]. Also for multilayered piezoelectric
structures with homogeneous material properties
in each layer of the plate, concentration of stress,
creep at high thermal environments and failure usu-
ally occur between the layers. To reduce such dis-
advantages, a new kind of materials was developed
in which, one or several layers were made from
functionally graded materials (FGMs) with differ-
ent thermo-electro-mechanical properties changing
softly through the thickness of the structure [5].
This type of materials is called FGPMs. There are
many papers that deal with the behavior of such
structures in thermal environments and some of
them are mentioned here.

∗E-mail: Behjat@sut.ac.ir

An exact 3-D analysis of FGPM plate for two
types of boundary conditions (simply supported
and four sides clamped) was performed by Zhong
et al. [6]. They modeled a FGPM plate by con-
sidering that the mechanical and electric proper-
ties of the material obey power law distribution in
the thickness direction. Lee [7] developed a linear
layer-wise finite element formulation to study the
static behavior of functionally graded piezoelectric
bimorph actuators. This formulation was developed
to study the displacement and stress response in
thermo-electrical environments. The electrostatic
behavior of FGPM cantilever beam based on the
theory of elasticity has been studied by Xiang et
al. [8]. They suggested a general formulation that
can be used to compute the maximum deflection of
a functionally graded piezoelectric actuator. Zhong
et al. [9] presented an exact solution of a function-
ally graded piezo-thermo-electric simply supported
rectangular plate. To obtain the solution, they used
the double Fourier series. Yang et al. [10] investi-
gated the static bending and dynamic response of
actuators with various structures made of FGPMs
under electro-thermal and mechanical loading con-
sidering Timoshenko beam theory. It is assumed
that mechanical, electrical and thermal properties
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of the actuator, except Poisson ratio, are varying
through the thickness direction due to power law
distribution. Xiang et al. [11] performed the static
analysis of the FGPM plate by using Airy stress
function method and presented its response un-
der electro-thermal loading. Alibeigloo [12] pre-
sented an analytical formula for thermo-electro-
elastic deformations of FGM cylindrical shells em-
bedded within piezoelectric layers assuming ax-
isymmetric behavior. Komeili et al. [13] studied the
static response of FGPM beams in thermo-electro-
mechanical environments. They compared the ac-
curacy and the reliability of Euler Bernoulli, first-
order shear deformation and third-order shear de-
formation theory with each other. Wu et al. [4] pre-
sented three dimensional analysis of FGPM circu-
lar hollow sandwich cylinders in simply supported
boundary conditions in thermal environments. Be-
hjat et al. [14] used finite element method to in-
vestigate nonlinear behavior of functionally graded
piezoelectric plates in electro-mechanical loading.
Nechibvute et al. [15] presented a comprehen-
sive study of the PZT ceramics and novel one-
layer crystals in the selection of sensor or actua-
tor substance. Li et al. [16] developed a function-
ally graded piezoelectric nanobeam model based
on the Timoshenko beam theory and considering
small scale effects by using a variational method.
They solved bending and free vibration of the beam
with simply supported boundary conditions. Nour-
mohammadi et al. [17] presented static bending
response of the functionally graded piezoelectric
material under mechanical, electrical, and thermal
loads. They found that correlations between the de-
flection and the power law index are completely
different under the mechanical and thermal load-
ings, which can be used to design structures in ac-
tuator or sensor state.

This article is devoted to the thermo-electro-
mechanical analysis of FGPM plates with piezo-
electric layers using finite element method. The
bending response of the plate is presented based
on the first order shear deformation plate theory
(FSDT) under electrical, mechanical and thermal
loadings. The pyroelectric propertes of the piezo-
electric plate are considered. To obtain the response

of the structure under various boundary conditions,
the finite element method is used. By using me-
chanical and electrical equilibrium equations, gov-
erning variational forms of the equations for the
FGPM plate are derived. The effects of different
volume fraction index, layer arrangement and vari-
ous loading conditions are studied on the deflection
of FGPM plate with piezoelectric layers and the
results are shown in a clear graphical form. This
study investigates the effect of power law index
on the behavior of multi-layer FGPM structures in
thermal environments to find a new design criterion
that can be used in the manufacturing of sensors
and actuators.

2. Geometry of the plate and prob-
lem description
2.1. Functionally graded piezoelectric
plates

Various analytical and computational models
for the spatial distribution of physical and me-
chanical properties of FGPMs have been proposed.
However, the power law function is a simple type
of such models [18–20]. It uses volume fraction of
a material component to explain the spatial distri-
bution of material properties through the thickness.
For a functional material made of two materials,
each property of the material can be expressed by
the following equation:

Vc +Vm = 1 (1)

Vc =

(
z
h
+

1
2

)n

, n > 0 (2)

where Vc, Vm are the volume fractions of bottom
and top surface materials, respectively, and n is the
power law index. The effective material property is
expressed by the following equation:

Ce f f = Cbot +(Ctop−Cbot)

(
z
h
+

1
2

)n

=

Cbot +(Ctop−Cbot)Vc (3)

where Ceff is the effective material property,
Ctop is the top surface property of the plate,
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Cbot is the bottom surface property of the
FGPM plate, and Vc is the volume fraction
of the material. In this paper, all mechan-
ical, thermal and piezoelectric properties,
except Poisson ratio, obey the power law
distribution.

In this paper, a sandwich FGPM plate with di-
mensions of 50.8 mm3 × 25.4 mm3 × 5 mm3

with two piezoelectric layers (h1 = h2 = 0.1 mm)
has been studied (Fig. 1). In this analysis, the ef-
fect of three types of layer arrangement on the
static response of the plate under electro-thermo-
mechanical loading has been studied. The FGPM
plate consists of functionally graded materials. The
upper surface of FGPM is PVDF-rich and lower
surface is PZT-rich. Two types of boundary con-
ditions are investigated in this paper. For conve-
nience, the clamped boundary condition in the plate
is termed by C and simply supported one is marked
by S. Also three types of layer arrangement are
considered in this article and the results for each
type are compared with the other types of the layer
arrangement (Fig. 1).

Fig. 1. Geometry of sandwich FGPM plate with three
types of layer arrangement.

3. Theoretical formulations
3.1. Constitutive relations

Considering the linear thermo-piezoelectricity
theory, the constitutive equations of a piezoelectric
material can be expressed as [10]:

σi j =Ci jklεkl− ei jkEk−λi jθ (4)

Dl = ei jε j + klkEk + plθ (5)

Here σij and εkl are the stress and strain tensors,
respectively, Dl, Ek are the electrical displacement

and the electrical field vectors, Cijkl is the elasticity
matrix, eij is the piezoelectric constant matrix, θ is
the temperature gradient with respect to the refer-
ence value, λij is the thermal expansion tensor, pl is
the pyroelectric vector and klk is the dielectric per-
mittivity coefficient matrix. λij can be expressed by
the following equation:

λi j =Ci jklαkl (6)

where Cijkl is the elasticity matrix and αkl is the
thermal expansion coefficient vector.

3.2. Displacements and strains
According to the first order shear deformation

theory of the plates, the displacement components
in the plate can be expressed as [21]:

u(x,y,z) = u0(x,y)+ zβx(x,y)

v(x,y,z) = v0(x,y)+ zβy(x,y)

w(x,y,z) = w0(x,y) (7)

where the variables u, v and w are displacements
along the x, y, z axes, respectively. Also u0, v0, w0,
denote the displacements of the mid-plane and βx,
βy are the rotations of a transverse normal about
the x- and y-axes.

The strain based on the displacements field in
equation 3 is given by:

εx =
∂u0

∂x
+ z

∂βx

∂x
,εy =

∂v0

∂y
+ z

∂βy

∂y

γyz =
∂w0

∂y
+βy,γxz =

∂w0

∂x
+βx

γxy =
∂u0

∂y
+

∂v0

∂x
+ z
(

∂βx

∂y
+

∂βy

∂x

)
(8)

By using Hook law, the constitutive equation of
the FGPM material can be defined as:

σx

σy

τxz
τyz
τxy

= [Q]


εx

εy

εxz
εyz
εxy

 (9)

where Q is:
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[Q] =


Q11 Q12 0 0 Q16
Q12 Q22 0 0 Q26
0 0 Q44 Q45 0
0 0 Q45 Q55 0

Q16 Q26 0 0 Q66

 (10)

The governing equations of piezoelectric material
are expressed in matrix form as following equation:

σx

σy

τxy

=

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


εx

εy

γxy

−
e31
e31
e31

Ez−

λ x

λ y

λ xy

θ

{
τxy

τyz

}
= k5

[
Q44 Q45
Q45 Q55

]{
γxz

γyz

}
−
[

e15 e25
e14 e24

]{
Ex

Ey

}
(11)

and:

Dz =
[
e31 e32 e36

]
εx

εy

γxy

+ ε33·Ez− [pz]θ

{
Dx

Dy

}
=

[
ε11 ε12
ε12 ε22

]{
Ex

Ey

}
+[

e15 e25
e14 e24

]{
γxz

γyz

}
−
[

px

py

]
{θ}

(12)

It is worth to note that, in above equations the in-
plane and out-of-plane parameters are separated.

3.3. Generalized equation in the varia-
tional form

The equilibrium equation of the plate is derived
based on the conservation of momentum and elec-
tric charge equations. The variational form of the
equilibrium equation of the piezoelectric plate can
be defined as following equations [22]:

δuT
ψu = −

∫
v
[δε]T [σ ]dv+

∫
v
δ
−→u T −→b dv+∫

Γq

δ
−→u T−→

τ dΓ = 0 (13)

δφ
T

ψe =−
∫

v
δET Ddv+

∫
Γq

δφ
T qdΓ = 0 (14)

The vectors ψu, ψe are the difference between ex-
ternal and internal forces and charges, respectively.
When mechanical and electric equilibrium occur,
these vectors can be set to zero. −→τ is the surface
traction on the Γq and q is the electrical charge ap-
plied on the terminal bounding surface Γq. Also v
is the plate volume.

By substituting equation 8 in equation 13 and
integrating in the thickness direction of the FGPM
plate, and replacing the strain and electric field
terms, the variational forms of the conservation
equations are derived as:∫

A0

(δ
−→
εa

T [Cs]
−→
εa +δ

−→
εb

T [Eeθ ]εeθ )dA+∫
A0

(δuT bT +δβ
T bT )dA+

∫
Γtau

δ
−→u T−→

τ dτ = 0

(15)∫
A0

(δE[EG]
−→
εb +δE[GE ]εeθ )dA+

∫
Γq

δ
−→
φ
−→q dΓ = 0

where parameters −→εa , −→εb, εeθ, Cs, Eeθ, EG, GE are
defined as:

−→
εa =

ε0

k0

ε0
s

εb =

[
δε0

δk0

]
−→
εeθ =

[
E
θ

]

[Cs] =

[A] [B] 0
[B] [D] 0
0 0 [As]

EG =

[
[E] 0
0 [E]

]

GE =

[
[G] 0
0 [T ]

]
Eeθ =

[
[E] −[Θ]

[E] −[Θ]

]
(16)

In the above equations, A, B, D are extensional,
bending-extensional coupling and bending stiff-
ness matrices, respectively. As is the shear stiffness
matrix; E, E are in-plane and out-of-plane piezo-
electric matrices of each layer of the plate; G is
the electric permittivity matrix of each layer of the
plate; Θ, Θ are the in-plane and out-of-plane ther-
mal expansion matrices and T is the FGPM pyro-
electric matrix. These parameters are defined by the
following expressions:

[E] = [e] · (zk+1− zk), [E] = 1
2 [e] · (z

2
k+1− z2

k)

[G] = [ε] · (zk+1− zk), [Θ] = [λ ] · (zk+1− zk)

[Θ] = 1
2 [λ ] · (z

2
k+1− z2

k), [T ] = [p] · (zk+1− zk) (17)
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3.4. Finite element model
The finite element method is employed to solve

the equation of the FGPM plate. The plate has been
modeled with an 8-node rectangular element that
has 7 degree of freedom for each node, the dis-
placements, electric potential and temperature. The
field variables can be expressed in terms of nodal
variables, as follows:

u0(x,y) =
8

∑
i = 1

Ni(x,y)u0i

v0(x,y) =
8

∑
i = 1

Ni(x,y)v0i

w0(x,y) =
8

∑
i = 1

Ni(x,y)w0i

βx(x,y) =
8

∑
i = 1

Ni(x,y)βxi

βy(x,y) =
8

∑
i = 1

Ni(x,y)βyi

φ(x,y) =
8

∑
i = 1

Ni(x,y)φi

θ(x,y) =
8

∑
i = 1

Ni(x,y)θ (18)

where Ni is the interpolation function and u, v, w,
βx, βy, ϕ, θ are the nodal values of displacements,
rotations, electric potential and temperature in the
element. By using above mentioned equations and
displacement-strain relation (equation 8), the final
form of the strain-displacement relation can be ob-
tained as follows:

[
−→
ε ] = [Bu]

−→u = [Ra]
−→u + z[Rb]

−→u +[Rs]
−→u (19)

where [Ra], [Rb], [Rs] are strain operators based on
the strain-displacement relations.

Combining equation 17 with equation 13 and
integrating through the area, the final equation of
equilibrium in the matrix form can be obtained as:

[Kdd ][
−→
U ]+ [Kde][

−→
ϕ

s]+ [Kde][
−→
ϕ

a]− [Kdθ ][
−→
θ ] = [F ]

(20)

[Ked ][
−→
U ]− [Kee][

−→
ϕ

s]− [Kee][ϕ
a]+ [Keθ ][

−→
θ ] = 0

(21)

where submatrices Kdd, Kde, Kee denote the elas-
tic, piezoelectric and permittivity stiffness matri-
ces; Kdθ and Keθ are the coupled thermal expan-
sion and pyroelectric stiffness matrices of the plate.
Also, U is the nodal parameters vector that consists
of five generalized displacement degrees of free-
dom per node; the three displacements (u, v, w) and
two rotations (βx, βy). Also ϕ is the nodal electric
potential vector and θ is the applied nodal temper-
ature vector. Superscripts s and a indicate the parti-
tioned submatrices in accordance with the sensory
(free) and active (actuator) electric potential com-
ponents, respectively.

Sensory electric potential using equation 18 is
expressed as follows:

[
−→
ϕ

s] = [Kee]
−1([Ked ][

−→
U ]+ [Keθ ][

−→
θ ]− [Kee][

−→
ϕ

a]) (22)

Combining equation 22 and equation 21, the fol-
lowing equation in matrix form can be obtained:

([Kdd ]+ [Kde][Kee]
−1[Ked ])[

−→
U ] =

[F ]+ [Kdθ ][
−→
θ ]− [Kde][Kee]

−1[Keθ ][
−→
θ ]+

[Kde][Kee]
−1[Kee][

−→
ϕ

a]− [Kde][
−→
ϕ

a] (23)

4. Numerical results and discus-
sion
4.1. Comparison study

In this section, to verify the proposed model,
two different examples are presented for the static
analysis of composite piezoelectric plates and
FGM plate with two piezoelectric layers. The first
example is presented to validate the piezoelec-
tric and thermal behavior of the model. The other
example is provided to examine the functionally
graded behavior of the plate.
Example 1. In this example a plate with dimen-
sions of 25.4 mm3 × 25.4 mm3 × 1.27 mm3 and
with the layers of [0/90/±45/p]s composed of car-
bon/graphite with attached piezoceramic layer un-
der temperature gradient is investigated and the re-
sults compared with the data reported by Bansal et
al.[23] (Fig. 2). The plate is clamped in one side
and is subjected to 100 °C temperature gradient.
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Fig. 3 depicts the dimensionless centerline deflec-
tion of the plate. It is seen that, the results obtained
in this paper have a good agreement with the results
reported by Bansal et al. [23].

Fig. 2. Geometry of a clamped composite plate with at-
tached piezoelectric layer [23].

Example 2. In the other case, an FGM plate with
piezoelectric layers has been studied. The plate is
clamped on one side and a uniform mechanical
load of q = 100 kN/m2 and actuator voltage 40 V
is applied at the top surface of the plate. The mid-
dle layer of the plate is made of FGM and has a
thickness of 5 mm and the upper and lower layers
are made of piezoelectric material with the thick-
ness of 0.1 mm. The FGM layer is composed of
zirconia and aluminum. Fig. 4 depicts the center-
line deflection of the cantilever FGM plate. From
this figure, it is inferred that the results obtained in
this paper have a good agreement with the results
reported by Dai et al. [24].

In this paper, thermal, electrical and mechanical
analysis of the sandwich FGPM plate has been per-
formed. The plate consists of one FGPM layer em-
bedded with pure piezoelectric layers. The FGPM
plate consists of PVDF-rich at upper surface and
PZT-rich at lower surface. Material properties of
the plate are listed in Table 1. In this article, “ther-
mal environment” means a condition that the struc-
ture is subjected to temperature gradient through-
out the thickness of the plate. The convergence
study of sandwich FGPM response has been done
for three boundary condition. Fig. 5 shows the
convergence of deflection in the center point of
the plate for three kinds of boundary conditions.

Fig. 3. Centerline defection of composite plate with
piezoelectric layer under 100 °C thermal gra-
dient.

Fig. 4. Centerline deflection of the cantilever FGM
plate subjected to mechanical and electrical
load.

It is observed that, the results are converged by us-
ing 50 elements.

4.2. FGPM plate with piezoelectric layers
under mechanical and electrical loading

In this section, a FGPM plate with three kinds
of layers (Fig. 1) at the top and bottom surfaces
that is subjected to uniform mechanical loading
(q = 10 kN/m2) has been studied. Here, the ef-
fect of the power law index n on the deflection of
FGPM plate is studied. Fig. 6 shows the centerline
deflection of FGPM plate with three kinds of layer



612 H. Nourmohammadi, B. Behjat

Table 1. Material properties of PVDF and PZT [25].

Properties PVDF PZT

E 2 GPa 60 GPa
v 0.3333 0.3333
G 0.75 GPa 22.5 GPa
α 1.2 × 10−4 1

◦C 1.2 × 10−6 1
◦C

k 1 × 10−10 F
m 150 × 10−10 F

m
d31 = d32 2.5 × 10−11 C

N −17.5 × 10−11 C
N

p3 2.5 × 10−5 C
◦Cm2 −75 × 10−5 C

◦Cm2

Fig. 5. Convergence study of sandwich FGPM plate
versus the number of elements.

arrangement under mechanical loading with CSSS
and CSSC boundary conditions and for power law
index n = 15.

Fig. 7 and Fig. 8 compare the response of the
plate with three kinds of layer arrangement under
mechanical and electrical loadings. Fig. 7 depicts
the maximum deflection for the three kinds of layer
arrangement under mechanical loading. According
to this figure, it is observed that by increasing of
power law index the deflection of the plate de-
creases. This can be explained by the increase in
the stiffness of FGPM plate. It is presumed that,
the layer arrangement b has maximum deflection
due to lower stiffness than others and the layer ar-
rangement c has minimum deflection due to higher
stiffness than other cases.

f Fig. 8 shows maximum deflection for
three kinds of layer arrangement under electro-
mechanical loading. This figure shows that the
layer arrangement a has good response to volt-

(a)

(b)

Fig. 6. The centerline deflection of FGPM plate with
three kinds of layers under mechanical loading:
(a) CSSS, and (b) CSSC.

age and reduces the deflection of the plate more
than the other cases. This phenomenon is related
to the effect of voltage on deflection, considering
that the sign of piezoelectric constants of upper
layer (PVDF) and lower layer (PZT) are different.
It means that when a voltage is applied to the plate,
the top layer becomes shorter and the bottom layer
becomes longer and it helps to decrease the deflec-
tion caused by mechanical loading.

4.3. FGPM plate with piezoelectric layers
under thermal loading

In this section, the plate is exposed to thermal
loading. The plate is under 10 °C to 100 °C ther-
mal loading that means the upper and lower layer
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(a) (b)

Fig. 7. The maximum deflection of FGPM plate with three kinds of layers under mechanical loading for various
power law indexes, (a) CSSS, and (b) CSSC.

(a) (b)

Fig. 8. The maximum deflection of the FGPM plate with three kinds of layers under electro-mechanical loading
for various power law indexes: (a) CSSS, and (b) CSSC.

temperature is Ttop = 10 °C to 100 °C and
Tbot = 0 °C, respectively.

Fig. 9 shows the centerline deflection of the
FGPM plate with three kinds of layer arrangement,
for CSSS and CSSC boundary conditions, that is
exposed to 30 °C thermal gradient.

It is worth to note that a difference in the
thermal expansion coefficients of two types
of materials causes deflection under uniform
thermal loading. When a sandwich FGPM plate
is under uniform thermal loading, due to α1,
the plate experiences in-plane displacements.

If this displacement is changing through the
thickness, the lateral deflection occurs. Also,
when a sandwich FGPM plate is under gra-
dient thermal loading due to difference of
temperature through the thickness, the plate
will experience different in-plane displace-
ments through the thickness, so deflection will
occur. Because of the combination of these two
mechanisms in the thermal loadings, the behavior
of sandwich FGPM will be different.

Fig. 10 shows the maximum deflection of
the FGPM plate with three kinds of layer
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(a)

(b)

Fig. 9. The centerline deflection of FGPM plate with
three kinds of layers under thermal loading: (a)
CSSS, (b) CSSC.

arrangement for CSSS and CSSC boundary con-
ditions, that is exposed to thermal loading. From
this figure it is inferred that, with increasing the
power index n the deflection of the plate increases
and then decreases. The reason of this behavior can
be explained by the difference in the coefficients
of thermal expansion and Young modulus of PZT
and PVDF. As previously mentioned, the differ-
ence between thermal expansions causes the plate
to experience different in-plane displacements
through the thickness under thermal loading and
this causes the deflection of the FGPM plate in
lateral direction. It can be seen that, in the layer
arrangement a the maximum plate deflection oc-
curs for n = 0.4 at the both boundary conditions.
This behavior also happens in layer arrangements

b and c and maximum plate deflection occurs for
n = 0.5 and n = 0.9, respectively. These values
can be an optimum point if we use the structure as
an actuator.

Fig. 11 compares the response of the plate to
three kinds of layer arrangements under thermal
loading. This figure shows the maximum deflec-
tion of three kinds of layer arrangement under ther-
mal loading. It is inferred from this figure that
the layer arrangement a has maximum deflection
due to high thermal expansion coefficient and the
layer arrangement c has minimum deflection due
to higher stiffness than others. By using this opti-
mum values in the design of sensors, efficient per-
formance of this materials can be achieved.

4.4. FGPM plate with piezoelectric layers
under electrical loading

Fig. 12 shows maximum deflection of FGPM
plate with three kinds of layer arrangement sub-
jected to 80 V electrical loading. It is seen in the
layer arrangement a that the maximum plate de-
flection occurs for n = 0 at the both boundary
conditions and it is due to PZT and PVDF at the
top and bottom of the plate. But in layer arrange-
ments b and c, maximum plate deflection occurs
for n = 0.3 and n = 0.8, respectively. In case of
b and c if n = 0, then the out-of plane piezo-
electric matrix becomes zero, so the deflection of
sandwich FGPM became zero. But in case of a,
when n = 0 because of PZT and PVDF layers
at the top and bottom of FGMP, the out-of-plane
piezoelectric matrix E is non zero, so the deflec-
tion of sandwich FGPM plate becomes non zero.
From Fig. 12 it is inferred that, with increasing the
power index n the deflection of the plate (case b
and case c) increases and then decreases. The rea-
son of this behavior can be explained by the dif-
ference in the piezoelectric coefficients and Young
moduli of PZT and PVDF and interaction between
piezoelectric constant and Young modulus of the
sandwich plate. The difference between piezoelec-
tric coefficients causes the plate to experience dif-
ferent in-plane displacements through the thickness
in electrical loading and this causes the deflection
of the sandwich FGPM plate in lateral direction.
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Fig. 10. Maximum deflection of FGPM plate with three kinds of layers under 10 °C to 100 °C temperature gradi-
ent: (a) CSSS and (b) CSSC.

With increasing n, Young modulus and the
piezoelectric constants of the sandwich FGPM
plate increase. By increasing Young modu-
lus, the deflection decreases, but by increas-
ing the piezoelectric constant, the deflection in-
creases, and these factors cause a maximum
point for deflection in FGPM plate under elec-
trical loading. These values can be selected

as an optimum point if we use the structure as
an actuator.

5. Conclusions
In this article, the bending response of multi-

layered FGPM plate is studied based on the first
order shear deformation theory under mechanical,
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(a)

(b)

Fig. 11. Maximum deflection of FGPM plate with three
kinds of layers under thermal loading for vari-
ous power law indexes: (a) CSSS, (b) CSSC.

electrical and thermal loadings. By using mechan-
ical and electrical equilibrium equations, the gov-
erning variational forms of the equations for the
FGPM plate are derived and the finite element
method is used to solve the problem. The effects of
different volume fraction index, layer arrangement,
various loading conditions and boundary condi-
tions on the deflection of FGPM plate are studied.
In three kinds of layer arrangement, the case a has
good response to applied voltage; when a voltage is
applied to the plate it shows larger decrease in de-
flection than other cases. Under the thermal loading
at specific power law index, the deflection becomes
maximum at each layer arrangement and it can be
used to design sensors and actuators in thermal en-
vironments to reduce the effect of thermal changes

(a)

(b)

Fig. 12. Maximum deflection of FGPM plate with three
kinds of layers under 80 V electrical loading:
(a) CSSS, and (b) CSSC.

in sensors and actuators response. Under the ther-
mal loading, layer arrangement case b is more sen-
sitive than other, due to greater thermal expansion
coefficient and case c shows more stationary be-
havior than other cases. By using this feature, the
efficient point of power law index in sensors and
actuators can be found to design such structures.
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