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Zeolites are microporous aluminosilicate/silicate crystalline materials with three-dimensional tetrahedral configuration.
In this study, the degree of crystallinity of the synthesized Linde Type A (LTA) zeolite, which is the main indicator of its
quality/purity is tried to be modeled. Effect of crystallization time, temperature, molar ratio of the synthesis gel on the relative
crystallinity of the LTA zeolites is investigated using artificial neural networks. Our experimental observations and some data
collected from literature have been used for adjusting the parameters of the proposed model and evaluating its performance. It
has been observed that two-layer perceptron network with eight hidden neurons is the most accurate approach for the considered
task. The designed model predicts the experimental datasets with a mean square error of 3.99 × 10−6, absolute average relative
deviation of 8.69 %, and regression coefficient of 0.9596. The proposed model can decrease the required time and number of
experiments to evaluate the extent of crystallinity of the LTA zeolites.
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1. Introduction

Zeolites play an important role as catalyst [1–
3], ion exchanger [4], membrane [5], gas separa-
tion [6], and photo-catalytic degradation of mate-
rials [7]. These crystalline materials may be pro-
duced naturally or synthesized in laboratory [8–
11]. In order to synthesize a specific type of zeo-
lite, appropriate ingredients should be used, their
ratio in the reaction mixture should be accurately
adjusted, and special attention should be given to
the temperature and crystallization time [12].

Chemically controlled particulate properties of
zeolites [13], kinetics of zeolite crystallization [14],
effect of thermal and hydrothermal treatment [15],
influence of anions on the kinetics of zeolite crys-
tallization [16], growth mechanism [17], and heat-
ing methods [18, 19] are the most popular as-
pects of zeolites which have extensively been in-
vestigated by different researchers. In spite of a
large amount of experimental studies on zeolites,
they have not been effectively investigated from
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the theoretical point of view, and mathematical
simulations of their behavior have not been fully
developed.

Large number of experimental data on synthesis
of the Linde Type A (LTA) zeolite [10, 12, 20–23],
and importance of simulation of its theoretical be-
havior motivated us to study this route from differ-
ent points of view. Therefore, a focus of the present
research is concentrated on designing an intelligent
tool to study the effect of the most influential syn-
thesis parameters on the relative crystallinity of the
LTA zeolites.

Experimental analyses confirm that the degree
of relative crystallinity of the LTA zeolites depends
mainly on the concentration of components in reac-
tion mixture, operating parameters, and synthesis
method [13, 24–26]. Initial silicon dioxide (SiO2),
aluminum oxide (Al2O3), sodium oxide (Na2O)
and water content in the reaction mixture, crystal-
lization time, aging time, stirring speed, tempera-
ture, and heating method are the parameters which
have a substantial influence on the degree
of relative crystallinity of the LTA
zeolites [13, 24–26].
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Although it is possible to take into account all
of the above mentioned parameters, attention of
the present study has been concentrated on a de-
velopment of a straightforward, simple and practi-
cal model for the considered task. Therefore, only
those key variables that have strong influence on
the degree of crystallinity of the LTA zeolite have
been chosen as the independent variables. The mo-
lar ratio of the ingredients in the synthesis mix-
ture (SiO2:Al2O3, Na2O:SiO2, H2O:Na2O), crys-
tallization time, and temperature were used as in-
dependent variables for estimating the extent of
crystallinity of the LTA zeolites. It should be men-
tioned that in order to decrease the number of in-
dependent variables, instead of using concentra-
tion of synthesized ingredients, their molar ratios
were employed. Our experimental observations as
well as experimental data reported by six different
groups of researchers [10, 12, 20–23] have been
utilized for designing the Artificial Neural Net-
works (ANN) model for simulating the degree of
crystallinity of LTA zeolites.

In the subsequent sections, a brief description of
the ANN approach, its different types, and proce-
dure of finding its optimal topology are presented.
Various ANN types have been designed, their
predictive accuracies have been compared using
some statistical indices, and the best one has been
selected.

2. Mathematical model
2.1. Artificial neural networks

Artificial neural networks (ANN) are developed
by mathematical simulation of behavior of the hu-
man neural system [27–30]. Excellent performance
of the ANN approaches in tracking behavior of var-
ious scientific problems, combined with their sim-
plicity and flexibility have led to high popularity
of these intelligent and non-linear methods in the
recent years [31–33]. These methodologies often
have at least two layers composing a number of
processing nodes, namely neurons. The neurons of
each layer may interconnect to the neurons of the
previous or subsequent layer(s) with respect to the
type of ANN model. Various types of mathematical

models can be employed as a practical tool for pat-
tern recognition [33], function estimation [34, 35],
fault detection [36] and also be a powerful tech-
nique for optimization of various processes [37].

It should be mentioned that training of these
smart artificial networks must be done by an ap-
propriate learning method. By training the ANN
model, it is possible to relate dependent and in-
dependent variables of the most nonlinear multi-
variable systems with arbitrary complexity [27–
30]. Back propagation, cascade correlation, and
conjugate gradient are the most popular learning al-
gorithms [38].

2.2. Different types of artificial neural net-
works

2.2.1. Feed-forward ANN models

The ANN models may be classified by the way
that the neurons of each layer are connected to
the neurons of previous or/and subsequent layers.
Feed-forward and recurrent networks are two dif-
ferent types of the ANN models [39, 40]. The feed-
forward topologies including multi-layer percep-
tron (MLP), radial basis function (RBF), general-
ized regression (GR), and cascade-forward back-
propagation (CFB) neural networks are among the
most widely used types of ANN models for han-
dling the regression problem [30, 33, 41, 42]. In
spite of neurons of the CFB network that are con-
nected to the neurons of all of the subsequent lay-
ers, neurons of the MLP, RBF and GR networks
are only connected to the neurons of the subsequent
layer [30, 33, 41, 42]. Since the MLP network of-
ten shows better performance in modeling and pre-
dicting behavior of various phenomena, it has been
studied in more detail in this section.

As Fig. 1 illustrates, the MLP network is com-
posed of input, hidden and one output layer. Inde-
pendent variables enter the hidden layer. This layer
performs some mathematical manipulations on the
received information and then transfers it to the
output layer [40]. The neuron(s) of the output layer
present values of the dependent variables. The out-
put value from each artificial neuron can be com-
puted using equation 1:
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n j = f

(
N

∑
r=1

w jrxr +b j

)
(1)

Equation 1 shows that the output of a given neu-
ron can be calculated by: (1) algebraic addition of
bias coefficients bj to the multiplication of entered
information xr and its particular weight coefficients
wjr, and (2) passing the value of stage one through a
special function, namely transfer function f. Equa-
tion 2 and equation 3 which represent the hyper-
bolic tangent and logarithmic sigmoid respectively,
are the most commonly used transfer functions.

f (x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

(2)

f (x) =
1

1+ exp(−x)
(3)

Continuity, nonlinearity and differentiability of
these transfer functions are the main characteris-
tics that allow the ANN model to relate indepen-
dent and dependent variables of a considered phe-
nomenon [37, 38].

2.2.2. Recurrent ANN models
Elman [39] and Hopfield [43] are the most well-

known types of the recurrent networks. The El-
man network is a two-layer MLP network in which
the neurons of the first layer have both forward
and backward connections [39]. All of the neurons
of the Hopfield network are completely intercon-
nected, and therefore this ANN type has the max-
imum number of connections among the networks
with equal number of neurons [43].

2.3. Optimum structure of ANN model
Determining the optimum number of hidden

layers, and number of neurons, in each hidden layer
there are two important steps for designing the
ANN-based approaches.

2.3.1. Optimum number of hidden layers
It has been scientifically confirmed that the

MLP network with a single hidden layer having
a non-linear transfer function can accurately sim-
ulate the behavior of majority of multivariable pro-
cesses [44–46]. Therefore, in the present research

the MLP network with only one hidden layer is also
employed for estimating the amount of crystallinity
of the LTA zeolites.

2.3.2. Optimum number of hidden neurons
An ideal number of hidden neurons is not

known at all, and often determined by trial and
error process [29, 30]. Large numbers of hid-
den neuron suffer from an over-fitting, and often
need high computation efforts, while small num-
bers of hidden neuron are unable to relate depen-
dent to independent variables with an acceptable
accuracy [33–35].

Network growing and network pruning are two
effective strategies for evaluation an optimum num-
ber of hidden neurons [47]. Network pruning com-
mences with a large number of hidden units, and
tries to remove the extra neurons during the train-
ing stage, while the network growing strategy
starts with a small network and increases the num-
ber of hidden neurons until a desired accuracy is
achieved [48]. Since the majority of learning ef-
fort of pruning algorithms are allocated to the net-
works which are bigger than necessary, the net-
work growing strategy often presents more efficient
performance.

In summary, it can be said that a MLP network
with random structure (number of hidden layers as
well as hidden neurons) often encounters severe
difficulties in modeling and simulating the behav-
ior of considered processes.

3. Results and discussion
3.1. Design of an ANN model

Based on the previous explanations, only some
easily measured variables, i.e. molar ratio of the
SiO2:Al2O3, Na2O:SiO2 and H2O:Na2O in the
reaction mixture, temperature and crystallization
time are considered as independent variables for
estimation an extent of relative crystallinity of the
LTA zeolites by the different ANN approaches.

The schematic of the developed MLP model for
prediction the relative crystallinity of the LTA zeo-
lites is shown in Fig. 1. As Fig. 1 shows, our devel-
oped MLP network is composed of an input layer,
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an output layer and one hidden layer. The number
of neurons in the input layer is equal to the number
of independent variables, i.e. 5 neurons, while the
number of output neurons should be equal to the
numbers of dependent variable to be detected (i.e.
relative crystallinity). Therefore, the network’s in-
put and output consist of a five- and one-element
vector, respectively. Each layer is interconnected to
the subsequent layer and the strength of these con-
nections is determined by their associated param-
eters, i.e. weights. The weights and biases can be
adjusted by training the network using the standard
back propagation algorithm.

Fig. 1. Architecture of the proposed ANN model (bmn
is the bias of nth neurons in the mth layer).

Our previous findings [29, 30, 33–35, 40] justi-
fied that designing the MLP model from normal-
ized data is easier than working on the original
data. Therefore, in the present study all the vari-
ables have been mapped between [0 1] intervals.
As it can be seen from Fig. 1, in the present study
the log-sigmoid is utilized as the transfer function
in the input as well as output layers.

3.2. Experimental
At the first stage of our study, 128 experi-

mental measurements for the degree of relative
crystallinity of LTA zeolites have been collected
by either doing experiments or from the litera-
ture [10, 12, 20–23]. Our data-bank covers the
SiO2:Al2O3 ratio 1.1:25, Na2O:SiO2 ratio 0.03:8.1,
H2O:Na2O ratio 20:340, temperature ranges of

60 °C to 110 °C, and crystallization time of 0.5 h to
20 h. These experimental data have been employed
for designing the proposed MLP network and val-
idation its predictive accuracy. The collected ex-
perimental data, zeolite synthesis ingredients, their
considered ranges and operating conditions, as well
as minimum-maximum values of the available ex-
perimental observations are summarized in Table 1.

3.3. Determining an optimum configura-
tion of MLP approach

The experimental data have been randomly di-
vided into training and testing groups. Training
subset is employed for adjusting unknown parame-
ters of ANN approach (weights and biases). There-
after, the predictive capability of the trained ANN
model is examined and validated by testing the
dataset. Various ANN types such as RBF, MLP,
CFB and GR neural networks are checked and the
best one is determined through comparison of their
predictive accuracies.

Although predictive performance of larger
ANN for the training dataset is better than the small
ones, the former often encounters severe difficulty
for prediction of the testing subset. Therefore, an
optimum size of the ANN approach (number of
hidden neurons) is the smallest network than can
present an acceptable accuracy for estimation of
both the training and testing subsets. The predic-
tive accuracy of ANN model can be numerically
determined by some statistical error indices, such
as mean square error (MSE), absolute average rela-
tive deviation percent (AARD %), and regression
coefficient R2. These statistical error indices can
be mathematically expressed by equation 4 through
equation 6, respectively.

MSE =
1
N

N

∑
i=1

(
RCexp .

i −RCcalc.
i
)2

(4)

AARD% =
1
N

N

∑
i=1

(∣∣∣∣RCexp .
i −RCcalc.

i

RCexp .
i

∣∣∣∣)×100 (5)
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Table 1. Physical and operational conditions of various datasets.

SiO2:Al2O3 Na2O:SiO2 H2O:Na2O Ta [°C] CTb [h] RCc Nd The literature

2 – 10 0.46 – 2.9 39 – 91 60 – 110 5 – 15 10 – 100 13 this work
2 – 25 0.03 – 3 20 – 340 90 – 150 2 – 20 1 – 100 5 [10]

1.1 – 2.17 2.25 – 8.1 39.4 – 56.5 73 – 95 0.5 – 7.5 14 – 95 13 [12]
1.64 8.1 56.5 90 – 95 0.5 – 3.5 14 – 67 14 [20]

1.1 – 2.17 2.25 – 3.03 39.4 – 51.2 73 – 80 5.18 – 7.4 58.5 – 95.2 24 [21]
2 1.3 50 60 – 90 1 – 8 33 – 91 43 [22]

1.94 2.06 25 60 – 70 2.17 – 10 1 – 93 16 [23]
aTemperature
bCrystallization time
cRelative crystallinity
dNumber of experimental data

R2 =

N
∑

i=1

(
RCexp .

i −∆RC
)2 −

N
∑

i=1

(
RCexp .

i −∆RCcalc.
i
)2

N
∑

i=1

(
RCexp .

i −∆RC
)2

(6)
where N represents the number of experimental
data, relative experimental crystallinity RCexp.

i is
the experimental value of relative crystallinity, and
relative calculated crystallinity RCcalc.

i is the value
of relative crystallinity predicted by the developed
MLP model. Average value of the data of relative
crystallinity is shown by ∆RC.

At the first step, an optimum number of hid-
den neurons of the MLP model is determined, and
then its predictive accuracy is benchmarked using
those experimental data which are not used through
the training step. The same procedure is employed
for evaluating an optimal topology of the other
considered ANN models, i.e. RBF, GR and CFB
approaches.

Table 2 presents values of the MSE, AARD %
and R2 of different MLP networks differing by
the number of hidden neurons for training, test-
ing as well as overall dataset (training + testing).
It should be mentioned that the only difference
among these MLP networks is the number of their
hidden neurons.

The reported values of the error indices in Ta-
ble 2 clearly confirm that the MLP network with
eight hidden neurons (the bold row) which esti-
mates all the experimental data with an excellent

Table 2. Performed sensitivity analysis to evaluate an
optimal MLP configuration.

Hidden Dataset Statistical accuracy analysis∗

neurons AARD % MSE R2

4
Train 10.38 7.50 × 10−6 0.919733
Test 32.29 2.02 × 10−5 0.883313

Overall 11.40 8.09 × 10−6 0.915907

6
Train 9.80 4.36 × 10−6 0.956004
Test 12.1 1.73 × 10−5 0.804316

Overall 11.99 4.97 × 10−6 0.949246

7
Train 8.81 3.01 × 10−6 0.969932
Test 12.04 1.89 × 10−5 0.593392

Overall 10.87 3.76 × 10−6 0.962130

8
Train 8.23 3.89 × 10−6 0.960577
Test 8.71 5.87 × 10−6 0.949055

Overall 8.69 3.99 × 10−6 0.959624

9
Train 6.83 2.77 × 10−6 0.972476
Test 11.4 3.54 × 10−6 0.968016

Overall 11.19 2.81 × 10−6 0.971683

10
Train 5.22 2.44 × 10−6 0.976019
Test 12.17 1.16 × 10−5 0.746325

Overall 5.55 2.87 × 10−6 0.970968

12
Train 4.68 2.25 × 10−6 0.973564
Test 14.59 0.000138 0.452852

Overall 18.08 8.61 × 10−6 0.911721
∗Only the best obtained values over twenty different trainings
per each topology are tabulated.

accuracy (MSE and AARD % of 3.99 × 10−6

and 8.69 %, respectively) is an optimum topol-
ogy. The optimal MLP model shows the R2 value



Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks 491

of 0.959624 for prediction of experimental data of
crystallinity of the LTA zeolites. Values of the sta-
tistical indices approve the excellent agreement be-
tween experimental data of relative crystallinity of
various LTA zeolites and their associated predicted
values by the developed MLP model.

In order to simplify the comparison among
prediction capabilities of various MLP networks
(with different numbers of hidden neurons), their
AARD % over the training and testing categories is
illustrated in Fig. 2.

It can be simply understood from Fig. 2 that,
by increasing the number of hidden neurons of the
MLP network, the value of AARD % continuously
decreases for training dataset. But the AARD %
of estimation for the testing dataset decreases un-
til eight hidden neurons, and thereafter no im-
provement in AARD % is obtained for the test-
ing group. Therefore, employing more than eight
hidden neurons over-fits the MLP network over
training dataset, and fails in prediction of the test-
ing dataset. Consequently, the two-layer network
with eight hidden neurons is chosen as an optimal
topology for the prediction of degree of relative
crystallinity of the LTA zeolites.

Fig. 2. Associated AARD % of various MLP topologies
over test and training subsets.

Variation of the mean square error for the best
MLP network versus epoch during its training pro-
cess is depicted in Fig. 3. The y-axis of this figure

Fig. 3. MSE variation versus epoch for the optimal
MLP predicting relative crystallinity; solid line
represents the goal while dashed line is training
MSE.

represents the values of observed MSE between the
optimal real target and MLP prediction, whereas
the x-axis illustrates an epoch. The epoch refers to
the number of times that the training dataset is fed
to the MLP model for adjusting its parameters.

The MLP outputs of the first epoch calculated
through performing some mathematical processes
on the raw independent variables are based on the
procedure described in section 2.2.1. Since the ini-
tial values of the weight and bias are randomly
generated, therefore some deviations (large extent
of MSE) are often observed between MLP outputs
and the real targets at the first epoch. The observed
error can be employed for updating the weights
and biases during the training process. These up-
dated weights and biases are used in the second
epoch. Training process continues until the MSE
converges to its predetermined values.

By increasing the number of epochs, the
weights and biases of the MLP model converge to
their optimal values and hence, the observed MSE
between MLP prediction and real target decreases.
It can be seen from Fig. 3 that the observed MSE
value between observed and calculated values by
the MLP network converges to the acceptable val-
ues of 3.9 × 10−6 after 1500 epochs and its learning
process seems to be successful.
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3.4. Comparison of the predictive accu-
racy of various ANN models

In this section, the predictive accuracy of the
MLP network has been compared with the other
ANN types, i.e. RBF, GR and CFB. The results of
comparison analysis between the performances of
the developed MLP network for prediction of rela-
tive crystallinity of the LTA zeolites with the other
ANN approaches are presented in Table 3. In order
to base the comparison on a fair basis, eight neu-
rons have been put in the hidden layer of all the
considered ANN types (RBF, GR and CFB neural
network).

These comparison studies have been accom-
plished based on the AARD %, MSE and R2. It
can be simply understood that a network with the
smallest AARD % and MSE, and R2 closer to unity
should be selected as the best model for the con-
sidered task. The MLP, GR, RBF and CFB neural
networks show the AARD % of 8.69 %, 29.73 %,
35.72 % and 10.89 % for estimation all the ex-
perimental relative crystallinity, respectively. It is
obvious that the RBF model presents the mini-
mum error (AARD = 1.03 %) for the training
dataset while the highest error for training dataset
(AARD = 12.55 %) is introduced by the GR net-
work. Comparison of the performance efficiencies
of the four different ANN types clears that the MLP
network (the bold row) is the best approach for es-
timating the values of relative crystallinity of the
LTA zeolites.

While the two-layer MLP network with eight
hidden neurons introduces the best capability for
estimation and simulation of relative crystallinity
of the LTA zeolites, it can be considered as the op-
timal neural network method.

3.5. Prediction accuracy of the optimal
MLP model over experimental data

Fig. 4 shows the comparison between
those values of relative crystallinity of the
LTA zeolites which are predicted by the op-
timal neural network and their associated
experimental training and testing datasets.
The perfect fit (predictions equal with the real

Table 3. Comparison the predictive accuracy of various
ANNs approaches.

ANN Statistical sensitivity analysis
type AARD % MSE R2

MLP
Training Dataset 8.23 3.89 × 10−6 0.960577
Testing Dataset 8.71 5.87 × 10−6 0.949055
Overall Dataset 8.69 3.99 × 10−6 0.959624

GR
Training Dataset 12.55 3.21 × 10−5 0.936425
Testing Dataset 61.70 4.50343 0.423053
Overall Dataset 29.73 2.24124 0.823536

RBF
Training Dataset 1.03 1.09 × 10−7 0.996425
Testing Dataset 82.62 4.83243 0.403123
Overall Dataset 35.72 2.47360 0.783124

CFB
Training Dataset 9.31 8.09 × 10−6 0.953512
Testing Dataset 13.20 3.90 × 10−5 0.943578
Overall Dataset 10.89 9.23 × 10−6 0.948041

data) is shown by the dashed 45° line. The small
deviation from the 45° line in Fig. 4, shows that the
predicted training and testing subsets have been
correctly mapped on their associated experimental
values.

The optimal MLP approach presents
R2 = 0.9605 between the predictions and ex-
perimental relative crystallinity data of the training
dataset. The proposed model has predicted the
experimental relative crystallinity data of the
training subset with AARD % and MSE of 8.23%,
3.89 × 10−6, respectively. It should be noted that
the optimal MLP network introduces MSE =
5.87 × 10−6, AARD % = 8.71 and R2 = 0.9490
for estimation of the testing subset.

Fig. 5 indicates graphical presentation of the
AARD % values which have been introduced by
the optimal MLP approach for estimation our data
as well as reported experimental datasets by other
groups of researchers [10, 12, 20, 23]. It can be
clearly seen from this figure that the proposed MLP
model encounters some difficulties (relatively large
AARD %) in prediction the behavior of the re-
ported data by Murat et al. [22] and Park et al. [23]
and presents the AARD % of 10.2 % and 12.2 %
for these two datasets, respectively. Excluding
these two datasets, the developed MLP approach
shows remarkable predictive accuracy in model-
ing other available experimental data and estimates
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Fig. 4. Schematic presentation of performance of the
optimal MLP network for estimation the de-
gree of relative crystallinity of LTA zeolites over
training + test datasets.

all of them with overall AARD % lower than 3 %.

Fig. 5. The performance of the MLP network with opti-
mal topology for prediction the reported relative
crystallinity by various groups of researchers.

3.5.1. Investigation of the effect of crystalliza-
tion time on the relative crystallinity

Fig. 6 illustrates the variation of degree of rel-
ative crystallinity for the LTA zeolite as a func-
tion of crystallization time. The experimental val-
ues of crystallinity for the LTA zeolite in this figure
are either our experimental data or other researcher
results [10, 12, 20, 23]. It can be concluded

that increasing the crystallization time can increase
the extent of relative crystallinity for the LTA zeo-
lites. In order to ease the comparison between ex-
perimental data of crystallinity for the LTA zeolite
and calculated values by the best MLP network, the
results of MLP network are also presented in Fig. 6.
It can be clearly concluded that the proposed MLP
model can correctly track the increasing pattern of
crystallinity for the LTA zeolite with time as well
as estimate all the individual experimental data.

Fig. 6. Experimental and theoretical investigation of the
influence of reaction time on the extent of rela-
tive crystallinity of the LTA zeolites.

3.5.2. Variation of the extent of relative crys-
tallinity by temperature

Fig. 7 depicts variation of relative crystallinity
for the LTA zeolites as a function of operating tem-
perature [12, 23]. It can be simply understood from
Fig. 7, that increasing the temperature can result
in increasing the extent of relative crystallinity for
the LTA zeolites. The relative crystallinity values
predicted by the optimal MLP methodology, which
are also presented in Fig. 7, confirm the excellent
agreement between MLP predictions and experi-
mental data points. It can be clearly observed that
the designed MLP approach can correctly follow
the rising trend as well as estimate all the individ-
ual experimental data.
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Fig. 7. Profile of degree of relative crystallinity of the
LTA zeolites as a function of temperature and
values predicted by the optimal MLP network.

3.5.3. Effect of H2O:Na2O molar ratio on the
degree of relative crystallinity

In Fig. 8, experimental values of relative crys-
tallinity of the LTA zeolite which have been ob-
tained by our own experiments or reported by other
researchers [12, 21], as well as their associated pre-
dictions which have been simulated by the optimal
MLP network, are plotted as a function of the molar
ratio of H2O:Na2O.

Fig. 8 clearly illustrates that the proposed MLP
approach can forecast both increasing and decreas-
ing pattern for variation of experimental values of
relative crystallinity for the LTA zeolite at different
molar ratios of H2O:Na2O [12, 21].

3.5.4. Investigation of the effect of SiO2:Al2O3
and Na2O:SiO2 molar ratios

The ratio of SiO2:Al2O3 has a slight influ-
ence on the degree of crystallinity of the LTA ze-
olite. In general, it was one of the most deci-
sive parameters but because of the present focus
on LTA preparation it was already biased towards
its formation. However, some researchers have ob-
served that the degree of crystallinity increases for
lower SiO2:Al2O3 molar ratios reaching maximum
value for SiO2:Al2O3 ≈ 1 [49]. Moreover, Bur-
riesci et al. [49] have reported that by increas-
ing the molar ratio of Na2O:SiO2, different types

Fig. 8. Experimental values of relative crytallinty of the
LTA zeolite as well as their associated predic-
tions by the MLP network versus H2O:Na2O
molar ratio.

of zeolites including LTA, sodalite, phillipsite and
faujasite may be produced.

4. Conclusions
In the present study, an automatic intelligent

methodology based on artificial neural network is
designed for mathematical simulation of the extent
of relative crystallinity for LTA zeolites. Some
easily measured variables, i.e. molar ratios of the
SiO2:Al2O3, Na2O:SiO2 and H2O:Na2O in the
reaction mixture, temperature and crystallization
time are employed as independent variables for
the considered task. Iterative constructive method
combined with statistical error analyses reveal
that the two-layer perceptron network (strictly
feed-forward structure) with eight hidden neurons
is the best approach for simulation the degree of
crystallinity for the LTA zeolite. Performance of
the best developed MLP approach has been bench-
marked by both our experimental data, and some
reported experimental data from other researchers.
The results of the developed MLP network confirm
that it is capable to predict the degree of relative
crystallinity for the LTA zeolites with an excellent
accuracy (MSE = 3.99 × 10−6, AARD % = 8.69
and R2 = 0.9596). Excellent performance
of the designed MLP network in prediction
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of the experimental data confirms that this ap-
proach can be effectively employed for accurate
estimation of relative crystallinity for LTA zeolites.
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