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First-principle calculations of effective mass of silicon crystal
with vacancy defects
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The energy band structures and electron (hole) effective masses of perfect crystalline silicon and silicon with various
vacancy defects are investigated by using the plane-wave pseudopotential method based on density functional theory. Our results
show that the effect of monovacancy and divacancy on the energy band structure of crystalline silicon is primarily reflected in
producing the gap states and the local states in valence band maximum. It also causes breaking the symmetry of energy bands
resulting from the Jahn-Teller effect, while only producing the gap states for the crystalline silicon with hexavacancy ring.
However, vacancy point defects could not essentially affect the effective masses that are derived from the native energy bands
of crystalline silicon, except for the production of defect states. Simultaneously, the Jahn-Teller distortions only affect the gap
states and the local states in valence band maximum, but do not change the symmetry of conduction band minimum and the
nonlocal states in valence band maximum, thus the symmetry of the effective masses. In addition, we study the electron (hole)
effective masses for the gap states and the local states in valence band maximum.
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1. Introduction
Silicon, as the most important industrial ma-

terial, has been widely used in various devices,
such as advanced electronic devices [1], power de-
vices [2], solar cells [3, 4] and microelectronic sys-
tems [5]. Due to limitations of the fabrication pro-
cess, the ideal silicon crystal cannot be obtained
in practice because of a large number of defects
caused by the process of ion implantation, radia-
tion or mechanical erosion. The presence of defects
would bring the additional defect states, which di-
rectly influences the optoelectronic properties of
materials [6].

Considering the significant effect of defects on
devices and crystal quality, the defects arising dur-
ing the process of crystal growth have been exten-
sively studied in last decades, mostly focusing on
the diffusion of the intrinsic point defects [7]. It
is well known that in crystalline silicon, a vacancy
defect is a kind of important intrinsic point defect.
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So far, lots of reports have been related with the
mechanical and electronic properties of the va-
cancy defects in crystalline silicon, which mainly
referred to the defects of monovacancy, divacancy
and hexavacancy [8–12]. Generally, the simplest
monovacancy plays a key role in self-diffusion
and impurity diffusion. Compared with other va-
cancies, divacancy has attracted extensive attention
from both theoretical and experimental aspects as
it is easy to be formed during the irradiation pro-
cess, and thus is stable. For example, the struc-
ture and formation energy of the charged state of
the divacancy defect have been studied experimen-
tally [13, 14] and using theoretical first-principles
calculations [15–18]. Additionally, hexavacancy, as
the smallest ring vacancy, can be regarded as an ef-
fective adsorption center for hydrogen, oxygen and
transition metal atom [19].

As we know, the defects in crystal often mix
with various other defects instead of appearing as
single one. The effect of an individual kind of va-
cancy defect on the electrical properties of crys-
tal is difficult to be measured only by experiment.
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Therefore, theoretical research becomes important
because it can investigate one kind of defect in-
dependently. Moreover, conductivity, which is the
principal physical quantity to describe the elec-
tronic properties of materials, is in proportion to
carrier mobility and inversely proportional to ef-
fective mass of electron or hole. Obviously, the ef-
fective mass of electron or hole is closely related
to the conductive properties of crystalline silicon.
Up to now, there has only been few literature that
reported the effect of the vacancy defects on the
effective masses derived from energy band. Moti-
vated by this, in this work the effective masses of
electron or hole in crystalline silicon with various
kinds of vacancy defects (monovacancy, divacancy
and hexavacancy) are systematically studied by us-
ing first-principles calculations. Then, the influence
of the type of defect on the active mass is discussed.

2. Model and methodology
2.1. Theoretical model

Crystalline silicon adopts the structure of dia-
mond with 8 Si atoms in unit cell. The supercell
containing 216 Si atoms with 3 × 3 × 3 model is
used to produce defects in crystal so that the in-
teraction between the defect and its image could
be neglected. The crystalline structure with mono-
vacancy, divacancy and hexavacancy ring defects
can be obtained by removing one, two or six Si
atoms from the supercell, respectively. The opti-
mized configuration with the lowest energy is se-
lected to be further studied.

2.2. Methodology

All calculations are performed by using the
VASP [20, 21] (Vienna ab initio Simulation Pack-
age) within the projector augmented-wave (PAW)
approach [22]. The ground state of the electronic
structure is described within density functional the-
ory (DFT) using the generalized gradient approx-
imation (GGA) with Perdew-Wang (PW91) ex-
change correlation function [23]. The energy cut-
off for expansion of wave functions and potentials
is 300 eV. Monkhorst-Pack special k-point method
is used with a grid of 2 × 2 × 2 [24]. The entire

systems are relaxed by conjugate gradient method
until the force on each atom is less than 0.01 eV.

3. Results and discussions
3.1. Geometry optimization

Firstly, the geometry of silicon crystal with
a defect is optimized. The relaxed structures are
shown in Fig. 1. The distances between Si–Si
atoms (dSi−Si) around the monovacancy defect are
all equal to 3.86 Å before relaxation. After relax-
ation, four distances between Si–Si atoms decrease
to 3.53 Å, while the other two decrease to 3.03 Å.
Obviously, the structure around the monovacancy
defect distorts. It is typically called as the Jahn-
Teller effect which influences the electronic prop-
erties of silicon crystal with monovacancy defect.
This is in agreement with the previous report [25].
With respect to divacancy defect, it is found that
the optimized structure relates to the initial struc-
ture. By fine tuning the positions of six Si atoms
around the divacancy defect, two different config-
urations with almost degeneration energy are ob-
tained finally. The difference lies in the six Si–Si
distances that are formed between two Si atoms
in every three Si atoms around the defect. For the
first configuration, four Si–Si distances dSi−Si are
3.49 Å, while the other two are 2.80 Å, as shown
in Fig. 1b, which is named as LP divacancy de-
fect. However, for the second configuration, four
Si–Si distances dSi−Si are 3.10 Å, and the other two
are 3.62 Å, as shown in Fig. 1c, which is named
as RB divacancy defect. From the structure point
of view, local distortion could be observed for the
two configurations with divacancy defects, and thus
lower the structural symmetry. This indicates the
appearance of the Jahn-Teller effect. From the en-
ergy point of view, the total energy of the silicon
crystal with LP divacancy defect is only by 3 meV
lower than that with RB divacancy defect, in accord
with the reports by Pesola et al. [10] and Makhov
et al. [26]. Therefore, the small energy difference
shows that the two configurations could both exist
in realistic conditions. With regard to hexavacancy
ring defect, the Si–Si distances around the defect
all decrease from 3.84 Å to 2.74 Å after relaxation,
as shown in Fig. 1d.
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(a) (b)

(c) (d)

Fig. 1. Schematic view of crystalline silicon with monovacancy (V1), divacancy(V2) and hexavacancy (V6) de-
fects (The light blue small balls denote the vacancy sites, the dark blue small balls denote the nearest
neighbor atoms to the vacancy sites); (a) monovacancy defect; (b) LP divacancy defect; (c) RB divacancy
defect; (d) hexavacancy defect.

3.2. Energy band structures

Next, we will investigate the electronic struc-
tures of perfect silicon and silicon with defects.
The band structure of the perfect silicon crystal
is shown in Fig. 2 (Fermi level is set to be 0 eV,
and the same hereinafter). The high symmetry k-
points of Brillouin zone along the band paths in

Fig. 2 are G(0, 0, 0), F(0, 0.5, 0), Q(0, 0.5, 0.5) and
Z(0, 0, 0.5). The results clearly show that silicon
crystal is a semiconductor with indirect band gap.
The valence band maximum (VBM) locates at G
point, while conduction band minimum (CBM) lo-
cates at F point. The band that includes the CBM
is drawn with blue solid rhombus, which is
marked with band ”1”. Another band that includes
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the VBM is drawn with red hollow rhombus, which
is marked with band ”2”. The band ”2” is twofold
degenerate because the spin-orbital coupling is not
considered in our calculations. Moreover, it is ev-
idently found that the energy bands along G-F-Q
and G-Z-Q pathways are symmetrical due to the
cubic symmetry in a perfect silicon crystal.

Fig. 2. Energy band structure of a perfect silicon
crystal.

The band structure of silicon crystal with mono-
vacancy defect is shown in Fig. 3. It is found
that the band including VBM (band ”2”) ex-
hibits the characteristics of localized state and
the corresponding charge density mainly concen-
trates around the vacancy defect by band decom-
posed charge density analysis. In contrast to the
band structure of perfect crystal, two evident de-
fect bands stand above the Fermi level in the crys-
talline silicon with monovacancy defect, which are
marked with band ”3” (the curve drawn with purple
hollow triangle) and band ”4” (green solid trian-
gle). The two defect bands are also related with the
localized states and have the asymmetric charac-
teristics. The bands along G-F-Q and G-Z-Q path-
ways and the band degeneracy are quite differ-
ent. It indicates that the localized cubic symme-
try has changed. Combined the localized structure
with monovacancy defect, it can be understood that
the change of localized symmetry results from the
Jahn-Teller distortion.

The band structures with divacancy defects
are shown in Fig. 4 and Fig. 5. Similar to the
case of monovacancy defect, the band with VBM

Fig. 3. Energy band structure of a silicon crystal with
monovacancy defect.

(band ”2”) corresponds to the localized state, and
two clear defect bands (band ”3” and ”4”) oc-
cur above the Fermi level. The dispersion of the
two bands relates to their pathways, and shows
the asymmetric character along G-F-Q and G-Z-Q
pathways. Similar to the case of monovacancy, the
reason results from the Jahn-Teller distortion, re-
gardless of LP divacancy defect or RB divacancy
defect, thus lowering the original cubic symmetry.

Fig. 4. Energy band structure of a silicon crystal with
LP divacancy defects.

Fig. 6 shows the band structure of silicon crys-
tal with hexavacancy defect. It is different from
the cases of monovacancy and divacancy defects.
Firstly, the band with VBM corresponds to ex-
tended state instead of localized state by band de-
composed charge density analysis. Secondly, the
defect bands (band ”3” and ”4”) above the Fermi
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Fig. 5. Energy band structure of a silicon crystal with
RB divacancy defects.

level are very close to conduction band. Finally,
the band structure exhibits high symmetry. In other
words, the bands along G-F-Q and G-Z-Q path-
ways are symmetrical. Moreover, it is worthwhile
to note that the Jahn-Teller distortion is not found in
crystalline silicon with hexavacancy defect. There-
fore, it can be confirmed that the asymmetry of
band relates to the Jahn-Teller distortion in the
silicon crystals with monovacancy and divacancy
defects.

Fig. 6. Energy band structure of a silicon crystal with
hexavacancy defects.

3.3. Effective mass of electron and hole
As silicon is an important material in solar cells

and electronic devices, the electronic conductivity
is very important to its realistic applications. The
theory of effective mass can be regarded as a di-
rect method to understand the electronic properties

of a material. As a consequence, the related cal-
culations of effective mass for silicon crystal with
vacancy defect can be used to study the influence of
defects on its conductivity. The effective mass of an
electron or a hole can be obtained by the following
formula [27, 28]:

m∗
e(h̄) = h2

(
d2E(k)

dk2

)−1

(1)

where h̄ is reduced Planck’s constant, k is wave
vector, E(k) is electronic energy for the wave
vector.

The effective mass of electron near the CBM is
considered firstly. It should be noted that the bot-
tom of conduction band in our calculations is the
lowest unoccupied band, which does not include
the defect states, corresponding to the band ”1” in
all of the band structures. The calculated effective
masses are shown in Table 1. For a perfect silicon
crystal, the effective mass at F point strongly de-
pends on the direction. The effective mass along
FQ direction is 0.197 m0 (m0 is free electron mass),
which is much smaller than the effective mass of
0.95 m0 along FG direction, in agreement with the
results reported by Wang et al. [29]. Moreover, the
effective mass at F point (0, 0.5, 0) is equal to that
at Z point (0, 0, 0.5). It means that the effective
masses at F point along FQ and FG directions are
equal to each other, as well as at Z point along
ZQ and ZG directions. It originates from the sym-
metry of the bands along G-F-Q and G-Z-Q path-
ways, showing the characteristics of cubic symme-
try in a perfect silicon crystal. From Table 1, it
can be seen that the electron effective masses at
point F and point Z are almost equivalent when va-
cancy defects exist in crystalline silicon. Specially,
the effective mass of electron at point F slightly
increases along FG direction when the monova-
cancy defect and LP divacancy defect are induced,
while it is almost unchanged along FQ direction.
On the contrary, for the silicon crystal with RB di-
vacancy defect and hexavacancy defect, the effec-
tive mass of electron at point F along FG direction
decreases a little, whereas it increases along FQ
direction. Particularly, the effective mass of elec-
tron increases greatly from 0.197 m0 in the perfect
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Table 1. The calculated electron effective masses for
the bottom of the conduction bands (band ”1”
shown in all energy band structures) in crys-
talline silicon with or without the vacancy de-
fects.

m∗
e /m0 m∗

e /m0 m∗
e /m0 m∗

e /m0

[FG] [FQ] [ZQ] [ZG]

Perfect crystal 0.950 0.197 0.197 0.950
Monovacancy 1.174 0.190 0.199 1.066
LP divacancy 1.013 0.230 0.183 1.182
RB divacancy 0.813 0.269 0.277 0.572
Hexavacancy 0.805 1.236 1.467 0.800

crystal to 1.236 m0 in the crystal with hexavacancy
defect.

Next, the effective masses of a hole near the
VBM are calculated and listed in Table 2. Since the
bands containing VBM for the crystal with mono-
vacancy and divacancy defects are apparently lo-
calized, the hole effective masses calculations are
carried out for the bands with non-localized states.
Therefore, the band ”2” is used to calculate the hole
effective masses in the perfect crystal and the crys-
tal with hexavacancy defect, while the first band
related to non-localized state under the band ”2”
is used in the crystal with monovacancy and diva-
cancy defects. For the bands that are considered,
however, only the effective masses of holes at G
and Q points are calculated because the tops of the
band locate at G and Q points. For a perfect crys-
tal, the effective masses at G point along GF and
GZ directions are equivalent, as well as the effec-
tive masses at Q point along QF and QZ directions.
It shows that the effective masses at G and Q points
along two different pathways are symmetrical and
the difference between them is very small. When
vacancy defects are introduced, the symmetry of
effective mass of holes retains and the values are
somewhat larger than those in a perfect crystal.

The effective mass of an electron or a hole of
the defect bands and the localized bands near the
VBM in a crystal with various kinds of vacancy de-
fects are shown in Table 3. The positive value cor-
responds to the effective mass of an electron while
the negative value corresponds to the effective mass

Table 2. The calculated hole effective masses for the top
of the valence bands (the band related to the
non-localized states) in crystalline silicon with
or without the vacancy defects.

m∗
h/m0 m∗

h/m0 m∗
h/m0 m∗

h/m0

[GF] [GZ] [QZ] [QF]

Perfect crystal 0.278 0.278 0.233 0.233
Monovacancy 0.357 0.356 0.270 0.230
LP divacancy 0.318 0.336 0.300 0.305
RB divacancy 0.232 0.308 0.366 0.389
Hexavacancy 0.329 0.325 0.284 0.284

of a hole. The effective mass of an electron is only
calculated with respect to the unoccupied defect
bands. In contrast, the effective masses of holes are
calculated at the tops of localized bands near the
VBM. The results for monovacancy defect show
that the effective masses of holes near the top of
band are somewhat smaller. For instance, the effec-
tive masses of holes at point G along GF and GZ
directions are 0.180 m0 and 0.311 m0, respectively.
Similarly, the effective masses of electron at point
Q along QF and QZ, corresponding to the bottom
of interval band ”4”, are 0.338 m0 and 0.542 m0.
For the crystal with divacancy, regardless of LP or
RB, the effective masses of holes at VBM strongly
depend on directions. For example, the effective
masses of holes at point G along QF and QZ di-
rections in the crystal with LP divacancy defect are
1.593 m0 and 0.429 m0, respectively. Likewise, the
effective masses of holes at point F along FG and
FQ directions in the crystal with LP divacancy de-
fect are 0.447 m0 and 0.999 m0, and 0.841 m0 and
0.378 m0 at point Z along ZQ and ZG directions,
respectively. Compared with the crystal with LP di-
vacancy defect, the difference is more obvious in
the crystal with RB divacancy defect. The effective
masses of holes at point Z along ZQ and ZG di-
rections are 9.982 m0 and 0.479 m0, respectively.
For the crystal with hexavacancy defect, either de-
fect band ”3” or band ”4” have many valleys. Fur-
thermore, the energies for these two bands are very
close to each other. Therefore, the calculated values
of electron effective mass are very abundant. It can
be seen from the calculated results that the effective
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Table 3. The calculated electron (hole) effective masses for the defect states and the bands near the top of the
valence band (the non-localized states) in crystalline silicon with the vacancy defects (negative values
refer to hole effective masses, and the positive ones to electron effective masses).

band
m∗/m0

G F Q Z
GF GZ FG FQ QF QZ ZQ ZG

Mono
3 0.877 0.633
4 0.876 0.338 0.542 1.220 0.334
2 –0.180 –0.311 –0.281 –0.363

LP
3 1.054 0.583 0.538
4 0.447 0.999 0.841 0.378
2 –43.787 –0.576 –1.593 –0.429

RB
3 10.311 0.508 0.296
4 0.404 9.982 0.479
2 –0.760 –0.728 –1.878

Hexa
3 0.523 0.514 0.953 0.326 4.707 4.720 0.290 0.849
4 2.274 0.661 0.813 0.813 0.611 2.395

masses have apparently symmetric characteristics
with respect to Q point. It further shows that the
band of the crystal with hexavacancy is symmetric,
in accord with the previous energy band analysis.

4. Conclusions
The band structures and effective mass of elec-

tron (hole) in silicon crystal with various kinds
of vacancies are studied by using first-principles
methods. Our results show that:

(1) The band structures in perfect crystalline sil-
icon and in silicon crystal with hexavacancy defect
have cubic symmetry. However, the systems with
monovacancy and divacancy defects exhibit typi-
cally asymmetric characteristics due to the pres-
ence of defect bands caused by the Jahn-Teller
distortion.

(2) The effective mass of electron that corre-
sponds to the intrinsic band in perfect crystalline
silicon has high symmetry. The property of ef-
fective mass of electron in crystal with vacancy
defect is similar to that in perfect system except
for the larger effective mass in crystal with hex-
avacancy defect. The effective mass of hole that
corresponds to the intrinsic band in perfect crys-
talline silicon also has high symmetry, and the
values for the high symmetry points are almost

equivalent. Moreover, the values and symmetry of
the hole effective masses are basically kept in the
crystals with vacancy defects, implying that the
non-localized band symmetry of VBM and CBM in
monovacancy and divacancy defects is not changed
by Jahn-Teller distortion.

(3) The effective masses of electron (hole) for
the localized state bands at VBM and defect states
in the crystal with monovacancy defect are not
large and exhibit directivity. The effective masses
of electron (hole) that correspond to the localized
bands in the crystals with LP and RB divacancy de-
fects also exhibit apparent directivity. On the other
hand, the corresponding effective masses of elec-
tron (hole) in the crystal with hexavacancy defect
exhibit clear symmetry. It shows that the localized
state bands at VBM and defect states in the crys-
tals with monovacancy and divacancy defects can
be affected by the Jahn-Teller distortion.

(4) By analyzing the influence of vacancy de-
fects on the band structures and the effective
masses, and further investigating the effect of va-
cancy defects on conductivity and carrier mobil-
ity in crystal, the intrinsic relationship between va-
cancy defects and the electronic properties of crys-
talline silicon, has been relealed.
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R.M., Phys. Rev. B, 58 (1998), 1106.
[11] WRIGHT A.F., Phys. Rev. B, 74 (2006), 165116.
[12] HASINGS J.L., ESTREICHER S.K., FEDDERS P.A.,

Phys. Rev. B, 56 (1997), 10215.
[13] WATKINS G.D., CORBETT J.W., Phys. Rev., 138

(1965), A543.
[14] NAGAI Y., INOUE K., TANG Z., YONENAGA I.,

CHIBA T., SAITO M., HASEGAWA M., Physica B,
340 – 342 (2003), 518.

[15] IWATA J.I., SHIRAISHI K., OSHIYAMA A., Phys. Rev.
B, 77 (2008), 115208.

[16] OGUT S., CHELIKOWSKY J.R., Phys. Rev. Lett., 83
(1999), 3852.

[17] OGUT S., CHELIKOWSKY J.R., Phys. Rev. B, 64
(2001), 245206.

[18] WIXOM R.R., WRIGHT A.F., Phys. Rev. B, 74 (2006),
205208.

[19] ESTREICHER S.K., HASTINGS J.L., FEDDERS P.A.,
Appl. Phys. Lett., 70 (1997), 432.

[20] KRESSE G., HAFNER J., Phys. Rev. B, 47 (1993), 558.
[21] KRESSE G., FURTHMULLER J., Comp. Mater. Sci., 6

(1996), 15.
[22] PERDEW J.P., CHEVARY J.A., VOSKO S.H., JACKSON

K.A., PEDERSON M.R., SINGH D.J., FIOLHAIS C.,
Phys. Rev. B, 46 (1992), 6671.

[23] KRESSE G., JOUBERT D., Phys. Rev. B, 59 (1999),
1758.

[24] MONKHORST H.J., PACK J.D., Phys. Rev. B, 13 (1976),

5188.
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