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High accuracy computational methods for behavioral
modeling of thick-film resistors at cryogenic temperatures∗
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The aim of this work was to elaborate two-dimensional behavioral modeling method of thick-film resistors working in
low-temperature conditions. The investigated resistors (made from 5 various resistive inks: 10 resistor coupons, each with
36 resistors with various dimensions), were measured automatically in a cryostat system. The low temperature was achieved in
a nitrogen-helium continuous-flow cryostat. For nitrogen used as a freezing liquid the minimal temperature possible to achieve
was equal to −195.85 °C (77.3 K). Mathematical model in the form of a multiplication of two polynomials was elaborated
based on the above mentioned measurements. The first polynomial approximated temperature behavior of the normalized
resistance, while the second one described the dependence of resistance on planar resistors dimensions. Special computational
procedures for multidimensional approximation purpose were elaborated. It was shown that proper approximation polynomials
and sufficiently exact methods of calculations ensure acceptable modeling errors.
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1. Introduction

Thick-film resistors have been used in hybrid
microcircuits for about 50 years. However, there is
still no full explanation of different physicochem-
ical processes which occur during their fabrica-
tion and their relationships with resistor electrical
properties because commercially available thick-
film components are very complicated nonequilib-
rium systems. Every thick-film resistive ink con-
sists of four subsystems – metallic (conductive)
phase, glass, organic vehicle and modifiers, which
should be deposited on a proper substrate. During
firing there are physicochemical, thermodynami-
cal and mechanical interactions inside the men-
tioned subsystems or among them, the substrates
and terminations. The knowledge about such inter-
actions makes possible to obtain passive elements
with assumed exploitation parameters [1, 2]. For
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example, a change of firing profile, topology and/or
terminations metallurgy leads to intentional change
of resistance-temperature characteristics of a spe-
cified resistor (Fig. 1), e.g. by shifting the min-
imum of R(T) characteristics to the desired tem-
perature range of operation of an electrical circuit.
But a very simple qualitative DC electrical equiva-
lent circuit of a surface or buried thick-film resistor
(Fig. 1) suggests that both processes in the resis-
tor volume (Rb) as well as in the interface region
between the resistive film and terminations (Rk) af-
fect R(T) characteristics. It is thus clear that the in-
terface processes become more and more important
for modern miniaturized components.

On the other hand, the temperature properties of
thick-film resistors are important for designing and
operation of electronic circuits for military, medi-
cal or outer space applications as well as for wide
temperature range circuits [3]. For example, some
recommendations for the application of film resis-
tors in low-temperature electronic circuits can be
found in [4]. In general, the temperature proper-
ties of thick-film resistors are well described in a
standard temperature range (between −55 °C and

http://www.materialsscience.pwr.wroc.pl/


High accuracy computational methods for behavioral modeling of thick-film resistors. . . 213

125 °C). Also their R(T) characteristics, from very
low up to room temperature (−190 °C 6 T 6 25 °C
or even higher) are very important for the analysis
of possible conduction mechanisms in such com-
posites [5–13]. However, such models are not rec-
ommended for designers and users of electronic
circuits because of their complexity [14].

The mathematical models, worked out on the
basis of measurements, are a good solution to this
situation. Therefore, the aim of this paper was
to elaborate two-dimensional mathematical (be-
havioral) modeling method for thick-film resistors
working in low-temperature and at DC or low fre-
quency conditions (with neglected parasitic ele-
ments) for circuit design purposes. One should no-
tice that this attempt is different from that applied
by manufacturers of cryogenic temperature sensors
and controllers. For example Lake Shore Cryotron-
ics, Inc., offers temperature sensors in three ver-
sions: not-calibrated, abbreviate callibrated, e.g. at
two or three points, and fully calibrated [15]. The
calibrated sensors are provided among others with
a table containing calibration data (resistance vs.
temperature) and a curve fit allowing calculation
of temperature from the measurement of resistance
T(R). Two methods of approximation are there
used: the first curve fit type is a polynomial equa-
tion based on Chebyshev polynomials; the second
one is based on cubic spline route. Both methods
are done in chosen narrow temperature subranges
and recursively generated Chebyshev polynomials
are determined for normalized resistances (resis-
tances divided by the resistance subranges).

Authors of paper [16] proposed to describe the
T(R) dependence using the following formula:

1√
T

=A+B ln(R−R0)+C ln2(R−R0)

+D ln3(R−R0) (1)

which provides a very good description of tem-
perature T of the thermometer analyzed by au-
thor as a function of device resistance R. R0 is
the offset resistance whose value can be chosen so
that the residual errors were not larger than 10 K
in the whole temperature range even up to room
temperature.

For our purposes, the mathematical model
needs the temperature and dimensional dependence
of resistance R(T,l,w) to be described in a symbolic
form. The curve fit methods described above con-
cern inverse temperature characteristics T(R). But
in our modeling, R(T) in an explicit (developed)
form is needed. The methods mentioned above can-
not be applied for derivation of the R(T) relation-
ship because of lack of the unique solutions. The
purpose of our work was to develop the mathemat-
ical models of thick-film resistors to improve the
accuracy of electronic circuit design, in the range of
−200 °C to +25 °C. In this temperature range di-
rect polynomial approximation appeared to be suf-
ficiently exact.

The resistor models with a high accuracy are
needed for designing high accuracy electronic cir-
cuits such as e.g. high accuracy amplifiers (instru-
mentation amplifiers), small measuring bridges,
thermal compensation systems, notch filters and so
on. In a notch filter [17], consisting of a bandpass
filter and a summer, the gain at the center frequency
of the bandpass filter through the summer must be
equal to the input gain through the summer. The
more closely the two gains match, the deeper the
notch. Therefore, appropriate resistors should be
designed very precisely (Exact calculations show
that for scattering of a filter gain smaller than 10 %
the resistors must demonstrate smaller than 5 %
scattering of resistance). Therefore, we paid special
attention to the model accuracy and its temperature
dependence. The mathematical models in the form
of a multiplication of two 1D- and 2D-polynomials
were elaborated for 5 types of thick-film resistors.
The paper is organized as follows: in Section 2,
the measurement and data collecting system is de-
scribed, while in Section 3 the modeling method
is explained; Section 4 contains description of the
modeling results.

2. Experimental
2.1. Measurement system

At first, instrument set-up and measurement
methods needed to collect the necessary data
have been worked out. A cryostat system for
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Fig. 1. Typical shape of R(T) characteristics of thick-film resistor (left) and a simple DC electrical equivalent
circuit for the surface and buried resistor (right).

characterization of electronic components and cir-
cuits in low-temperature conditions was used [18].
This system exploits the continuous gas-flow type
N2/He cryostat working under LabVIEW program
control. The principle of its operation is shown in
Fig. 2.

Fig. 2. Principle of operation of continuous gas-flow
type cryostat.

The liquid nitrogen (LN2) or helium (LHe) can
be used as a cooling liquid. The source of LN2 is a
Dewar vessel from which the liquid is transported
to the cryostat chamber through a siphon with a
siphon bulb. Liquid fumes are transported from the
chamber to the heater, tested devices (DUT), flow
meter and finally to the outlet of fumes. There are
also two minor installations used for pressure con-
trol inside the Dewar vessel and for achieving vac-
uum in the cryostat chamber sheath. The resistance
temperature sensor and PID regulator were applied
for temperature control. The test resistors were

made from three Polish (R323, R324, R325) and
two Du Pont (DP1931, DP1939) inks with 1, 10 or
100 kΩ/sq sheet resistances, respectively. Ten test
coupons consisted of 36 thick-film resistors printed
on 30 × 50 mm2 alumina substrate (96 % Al2O3)
and terminations with PdAg conductors were made
from each paste. The conductors and resistors were
screen-printed with a 200 mesh screen and fired
under a standard temperature profile with 850 °C
peak temperature in a 60 min cycle. All pair com-
binations from the following set of values: (0.59,
1.31, 2.54, 3.96, 5.19, 5.91) (mm) were used as the
length and width of the designed resistors. To mea-
sure R(T) characteristics the resistor arrays were
placed in a special probe holder with gold pins
(Fig. 3) mounted inside the cryostat and connected
with measuring instruments using appropriate ca-
bles and connectors.

The measurements were performed in a wide
temperature range between −180 °C and +20 °C.
All measurements were performed under NI Lab-
VIEW software and GPIB interface with the high-
est possible accuracy. To avoid parasitic effects,
short- and open-circuit corrections were made at
the beginning of measurements. The resistance was
measured at 100 kHz and 1 V amplitude using
HP4263A LCR meter with 5 1

2 digits accuracy. For
minimizing uncertainty in measurements, the result
of measurement was calculated as an average value
of 64 measurements taken at one point. The resis-
tors were switched by a Keithley 7001 scanner.
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Fig. 3. Thick-film resistors test matrix and signal pins.

2.2. Data collecting
The measured resistances R were presented in

a matrix form at each temperature (Table 1). Ev-
ery element of this matrix (resistance) is a certain
mathematical function of temperature. The typical
plots of mean-value resistance and standard devia-
tion are shown in Fig. 4. In further considerations
we took these characteristics averaged over 10 sub-
strates and all 36 resistors (so-called mean-value
characteristics). The points in Fig. 4 and Fig. 5
correspond to measurement points, whereas con-
tinuous lines have been obtained from the fitting
procedure. Red and green lines in Fig. 4 represent
resistance characteristics approximated by polyno-
mial plus standard deviation (R + s) and polyno-
mial minus standard deviation (R – s). In this way,
the possible area of characteristics dispersion has
been depicted. The semirelative temperature sensi-
tivity characteristics: the mean value of a differen-
tial temperature coefficient of resistance (TCR) is
defined as:

sem TCR = (1/R)dR(T )/dT (2)

Based on this definition, the measured TCR re-
sults are shown in Fig. 5. As we can see, the TCR is
temperature dependent in the considered wide tem-
perature range. All tested resistors have a negative
TCR in the studied temperature range. Moreover,
the resistors from higher-resistive inks (DP1939 –
red line) exhibit larger resistance increase when

Fig. 4. Resistance and its standard deviation vs. tempe-
rature (R323): a dotted blue line – mean-value
resistance measured R, b red and green lines –
+/- standard deviation of resistance.

the temperature is decreased (Fig. 6) and more
negative TCR (Fig. 5) than the components from
lower-resistive inks (DP1931 – blue line). This ob-
servation is in agreement with the data presented
in [19] for SMD 0805 thick-film resistors from YA-
GEO. The temperature dependence of normalized
Rr(T) = R(T)/R0 (Fig. 6), (for instance R0 – resis-
tance at 0 °C) seems to be more universal than the
typical temperature characteristics. Based on the
results presented above we decided to fit the nor-
malized resistance dependence as n–th order poly-
nomial function of temperature.

3. The modeling method
For the purposes of mathematical modeling the

temperature and dimensional dependencies of re-
sistance in analytical forms are needed.

3.1. One-dimensional normalized resis-
tance polynomial approximation

As we can see in Fig. 5 and Fig. 6, the char-
acteristics differ between themselves for resis-
tors made of different inks. Therefore they can-
not be represented by one universal approximating
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Table 1. Matrix of resistances for every test coupon at each temperature.

[mm] w = 5.91 w = 5.19 w = 3.96 w = 2.51 w = 1.31 w = 0.59

l = 5.91 R1(T) R2(T) R3(T) R4(T) R5(T) R6(T)
l = 5.19 R7(T) R8(T) R9(T) R10(T) R11(T) R12(T)
l = 3.96 R13(T) R14(T) R15(T) R16(T) R17(T) R18(T)
l = 2.51 R19(T) R20(T) R21(T) R22(T) R23(T) R24(T)
l = 1.31 R25(T) R26(T) R27(T) R28(T) R29(T) R30(T)
l = 0.59 R31(T) R32(T) R33(T) R34(T) R35(T) R36(T)

Fig. 5. Mean-value differential TCR characteristics vs.
temperature, R323 – green line, R324 – light
blue dotted line, R325 – yellow line, DP1931 –
blue line, DP1939 – red line.

function. This means that every group of resistors
made from a particular resistive ink should be mod-
eled separately. The n–th order polynomial approx-
imating the normalized resistance Rr(T) as a func-
tion of temperature can be formulated as:

Pr(T ) =anT n +a(n−1)T
n−1 +a(n−2)T

n−2

+ . . . +a1T +a0 (3)

where T – temperature (here in °C), aj – j-th poly-
nomial coefficient, n – approximation order.

Because the vector of polynomial coefficients
pmean = [a1, a2, a3, . . . , an]T describes completely
the normalized resistance Rr(T), our interest is to
determine it. The Polyfit Matlab function appeared

Fig. 6. Thermal characteristics of relative (normalized)
resistance Rr, R323 – green line, R324 – light
blue dotted line, R325 – yellow line, DP1931 –
blue line, DP1939 – red line.

to be a good choice for this purpose. The approx-
imation order n = 4 was chosen to achieve the
accuracy better than 0.05 %. For example, the fol-
lowing vector of the mean polynomial coefficients
has been obtained: pmean = [a4, a3, a2, a1, a0]T

= [17.0623542878488e−012, 554.67022777463
9e−012, 518.760789099527e−009,−20.820560
7094316e−006, 1.00000831544915e+000]T for
DP1931 resistors.

The green line in Fig. 7 corresponds to the
mean-value of relative resistance approximated by
polynomial. As we can see, the accuracy of the
approximation is very good. The plots represent
averaged characteristics for all 36 resistors on
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Fig. 7. Relative resistance Rr vs. temperature and its
standard deviation (DP1931), blue circles –
mean values of measured relative resistance, red
and blue lines – Rr +/- standard deviation of rel-
ative resistance, green continuous line – relative
resistance characteristics approximated by poly-
nomial.

a substrate and for all ten coupons. As can be seen,
the dispersion of the normalized resistance value
is the largest for the lowest temperature and at
−180 °C it is less than 0.4 % of the nominal value
1.035.

The resistances can be calculated from the nor-
malized (relative) resistances using the following
expression:

R(T, l,w) = Rr(T, l,w)R0(l,w) (4)

where: Rr(T, l, w) – normalized (relative) resis-
tance, R0(l, w) – resistance at 0 °C.

Assuming that all resistors are governed by the
same temperature relation and temperature depen-
dence of their dimensions can be neglected, one
obtains:

R(T, l,w)≈ Rr(T )R0(l,w)≈ Pr(T )P0(l,w) (5)

where: Pr(T) – 1D-polynomial approximation
of normalized resistance temperature depen-
dence, P0(l, w) – 2D-polynomial approximation of
R0(l, w).

As we can see, the modeling process consists
of two stages. First stage – one-dimensional mod-
eling of temperature relationship Pr(T) ∼ Rr(T)
and second stage – 2D approximation process:
P0(l, w) ∼ R0(l, w). As the first stage has already
been done, the second stage should be solved.

3.2. Two-dimensional polynomial approx-
imation

In the expression 5 it is necessary to determine
the symbolic two-dimensional function P0(l, w).
There are several dimensional modeling methods
for description of this two-dimensional relation-
ship. Among them, the Golonka method [20] im-
proved by Edward and O’Brien [21] or Stecher [22]
as well as Chebyshev approximation [23, 24] en-
sure good accuracy. The Golonka and Chebyshev
methods were evaluated as the most accurate. How-
ever, the optimization process used for Golonka
improved functional model identification may con-
verge very slowly because of its multimodality, and
sometimes even cannot converge, at all. On the
other hand, the Chebyshev method, which provides
a unique solution, is very sensitive to moving of its
lattice nodes, what in terms of physics means that
it is sensitive to the inaccuracy in determining di-
mensions of the resistors. Therefore, in this work
a new two-dimensional polynomial approximation
method has been elaborated. This method is sim-
ilar to the Chebyshev method and ensures better
accuracy.

The resistance function R0(l, w) is approx-
imated by the appropriate two-dimensional
polynomial:

P0(l,w) =
q

∑
i=0

p

∑
j=0

ci, jliw j (6)

where: l and w are the length and width of resistor,
respectively; p and q are the orders of approxima-
tion along the l-axis and w-axis, respectively; ci,j –
coefficients, which are to be determined.

Taking the orders of the approximation p and q
equal to 5, a vector of coefficients Coeff = [C1, C2,
C3, . . . , C36]T of 2D-approximation polynomial is
obtained with good accuracy, by solving the system
of equations:
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R = P0(l,w)Coe f f (7)

where: R = [R1, R2, R3, . . . , R36]T – vector of all
resistors values counted by rows in the test matrix
(Table 1):

P0(l,w) =


PR1(l,w)
PR2(l,w)
PR3(l,w)
...
PR36(l,w)

 (8)

the base matrix of dimensional variables, where the
vector for each resistor has a symbolic form:

PRk(l,w) = [1,wk,w2
k ,w

3
k ,w

4
k ,w

5
k , lk, lkwk, lkw2

k , (9)

lkw3
k , lkw4

k , lkw5
k , l

2
k , l

2
k wk, l2

k w2
k , l

2
k w3

k , l
2
k w4

k ,

l2
k w5

k , . . . , l
5
k , l

5
k wk, l5

k w2
k , l

5
k w3

k , l
5
k w4

k , l
5
k w5

k ]

One of exact methods (e.g. Gauss-Jordan or
LU-factorization) for solving this system of equa-
tions is recommended to obtain the vector of co-
efficients with high accuracy. Calculations should
be performed using double precision data format.
Having coefficients determined, all the resistors
can be described as functions of their dimensions
in a symbolic form.

3.3. Estimation of modeling errors
As it was mentioned above, many factors, e.g.

film inhomogeneity, interactions within resistor
body as well as between resistor body and termina-
tions or substrate, affect R(T) characteristics. Such
factors cause small distribution of individual R(T)
characteristics for the components with identical
planar dimension. This could affect the accuracy
of modeling. Relative errors for each resistor at
each temperature point was calculated as an aver-
age value for 10 elements of population:

AccR = 100(Rcalc−Rmeas)/Rmeas (10)

where: AccR – accuracy of R-th resistor in %, Rmeas
– measured resistance, Rcalc – resistance calculated
from the model.

The results of accuracy calculations were col-
lected in a matrix form AccR(l,w) at each tempera-
ture point. Next, for these matrices, the average (S),
maximal (Smax) and minimal (Smin) relative errors
were calculated for each board from the following
formulas:

S =
1
36

6

∑
i=1

6

∑
j=1

Acc(i, j),

Smax = max
i, j

Acc(i, j),

Smin = min
i, j

Acc(i, j) (11)

4. Results
4.1. Resistors made of R323 ink

1D-approximation polynomial: The following
vector of the mean polynomial coefficients has
been obtained for resistors made of R323 ink (sheet
resistance Rsq = 103 Ω/sq): pmean = [a4, a3, a2,
a1, a0]T = [−8.40281536226495e−012,−588.
405773049851e−012, 809.406506286434e−00
9,−121.228710347784e−006, 1.000196715883
16e+000]T. It allowed us to create the follow-
ing one-dimensional polynomial Pr(T) = a4T4+
a3T3+ a2T2+ . . .+ a1T + a0 = −8.40281536
226495e−12T4 − 5.88405773049851e−10T3 +
8.09406506286434e−007T2 − 0.1212287103477
84e−006T + 1.00019671588316e+000.

Applying Horner’s rule for calculating the poly-
nomial, we obtain a computationally efficient form
(computer printout): Pr(T)=((((−0.840281536226
4953966797291e−11*TEMP−0.5884057730498
509150610015e−9)*TEMP+0.809406506286433
8502802378e−6)*TEMP−0.12122871034778361
79262275e−3)*TEMP+1.0001967158831628346
14950), where TEMP denotes temperature.

In this way, the number of multiplications was
reduced (from 10 to 4) without loss of the accuracy.

2D-approximation polynomial: Next, applying
expressions 6 to 9, 2D-approximation polynomial
P0(l,w) was calculated (computer printout): P0(l,w)
= (83554.20*l+46372.76*w−149786.0*l*w+96
290.49*l*wˆ2−28464.94*l*wˆ3+3951.733*l*wˆ4
−209.0804*l*wˆ5+135528.3*lˆ2*w−87466.41*l
ˆ2*wˆ2+25857.34*lˆ2*wˆ3−3585.410*lˆ2*wˆ4+
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189.4075*lˆ2*wˆ5−50118.21*lˆ3*w+32221.39*l
ˆ3*wˆ2−9484.827*lˆ3*wˆ3+1309.930*lˆ3*wˆ4−
68.96543*lˆ3*wˆ5+7855.159*lˆ4*w−5026.751*l
ˆ4*wˆ2+1471.770*lˆ4*wˆ3−202.2487*lˆ4*wˆ4+
10.60411*lˆ4*wˆ5−443.4330*lˆ5*w+282.2578*l
ˆ5*wˆ2−82.13061*lˆ5*wˆ3+11.22123*lˆ5*wˆ4−
.5855611*lˆ5*wˆ5−29964.13*wˆ2+8880.923*wˆ
3−1235.012*wˆ4+65.42886*wˆ5−74090.54*lˆ2
+27437.32*lˆ3−4305.576*lˆ4+243.3984*lˆ5-254
65.53).

Combining the 1D polynomial Pr (T) with 2D
polynomial P0(l, w) the full description of mathe-
matical model was obtained (computer printout):
P(T,l,w) = (83554.20*l+46372.76*w−149786.0
*l*w+96290.49*l*wˆ2−28464.94*l*wˆ3+3951.7
33*l*wˆ4−209.0804*l*wˆ5+135528.3*lˆ2*w−8
7466.41*lˆ2*wˆ2+25857.34*lˆ2*wˆ3−3585.410*
lˆ2*wˆ4+189.4075*lˆ2*wˆ5−50118.21*lˆ3*w+3
2221.39*lˆ3*wˆ2−9484.827*lˆ3*wˆ3+1309.930*
lˆ3*wˆ4−68.96543*lˆ3*wˆ5+7855.159*lˆ4*w-50
26.751*lˆ4*wˆ2+1471.770*lˆ4*wˆ3−202.2487*lˆ
4*wˆ4+10.60411*lˆ4*wˆ5-443.4330*lˆ5*w+282.
2578*lˆ5*wˆ2-82.13061*lˆ5*wˆ3+11.22123*lˆ5*
wˆ4−.5855611*lˆ5*wˆ5−29964.13*wˆ2+8880.9
23*wˆ3−1235.012*wˆ4+65.42886*wˆ5−74090.5
4*lˆ2+27437.32*lˆ3−4305.576*lˆ4+243.3984*lˆ
5−25465.53)*((((−0.84028153622649539667972
91e−11*TEMP−0.588405773049850915061001
5e−9)*TEMP+0.8094065062864338502802378e
−6)*TEMP−0.1212287103477836179262275e−
3)*TEMP+1.000196715883162834614950).

Using this model the following relative error
matrix AccR [%] at 0 °C was obtained:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.0346 −0.4396 −0.3627 −0.0635 0.0214 0.0214
0.2474 −0.1748 −0.2206 −0.0271 0.0238 0.0215
0.3680 0.0463 −0.0512 0.0079 0.0254 0.0215
0.0932 0.0169 −0.0005 0.0210 0.0237 0.0217
−0.2463 −0.1089 −0.0201 0.0155 0.0205 0.0200
−0.3820 −0.1827 −0.0434 0.0083 0.0180 0.0195

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The average error S(0 °C) = −0.0335 %

and maximal and minimal values of relative
errors: Smin (0 °C) = −0.4396 %, Smax (0 °C) =
0.3680 % for this matrix are valid. Similar matrices
and indicators have been calculated at each tempe-
rature point. The plots of dimensional distribution

of relative errors and temperature dependence of
relative errors are shown in Fig. 8 and Fig. 9, re-
spectively. As we see, the average error is close to
zero at all temperature points. However, at a tem-
perature in the vicinity of zero the scattering of the
errors is the smallest but it is not equal to zero.

Applying longer integer data format and integer
divisions in the polynomial calculations this inac-
curacy can be overcome: P(T,l,w) = (5741801237
925429/68719476736*l+3186711816261359/687
19476736*w−6999912627694779/274877906944
−5146606658744423/34359738368*l*w+82712
8999799781/8589934592*l*wˆ2−782438370782
4711/274877906944*l*wˆ3+1086244226653739
/274877906944*l*wˆ4−7356363110292235/3518
4372088832*l*wˆ5+1164178944500429/858993
4592∗lˆ2*w−3005322888524689/34359738368*
lˆ2*wˆ2+7107612344336475/274877906944*lˆ2
*wˆ3−1971099944798019/549755813888*lˆ2*w
ˆ4+6664185035254301/35184372088832*lˆ2*wˆ
5−6888194362096929/137438953472*lˆ3*w+88
56948477841461/274877906944*lˆ3*wˆ2−52143
38995780667/549755813888*lˆ3*wˆ3+28805654
44784041/2199023255552*lˆ3*wˆ4−4853010967
155661/70368744177664*lˆ3*wˆ5+43184195101
77029/549755813888*lˆ4*w−552697139707369
1/1099511627776*lˆ4*wˆ2+6472914700571789/
4398046511104*lˆ4*wˆ3−7115991790562483/35
184372088832*lˆ4*wˆ4+1492395587381659/140
737488355328*lˆ4*wˆ5−7800955237179143/175
92186044416*lˆ5*w+1241382780133703/43980
46511104*lˆ5*wˆ2−5779427892674011/7036874
4177664*lˆ5*wˆ3+3158494179461033/28147497
6710656*lˆ5*wˆ4−5274265191258867/90071992
54740992*lˆ5*wˆ5−8236477328720081/2748779
06944*wˆ2+4882339192415683/549755813888*
wˆ3−678954968503345/549755813888*wˆ4+14
3879592938063/2199023255552*wˆ5−50914634
08481717/68719476736*lˆ2+7541912871107027
/274877906944*lˆ3−2367015313627021/549755
813888*lˆ4+8563819245258181/3518437208883
2*lˆ5)*((((−0.8402815362264953966797291e−1
1*TEMP−0.5884057730498509150610015e−9)*
TEMP+0.8094065062864338502802378e-6)*TE
MP−0.1212287103477836179262275e−3)*TEM
P+1.000196715883162834614950);
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Fig. 8. Two-dimensional plot of relative errors at 0 °C.

Fig. 9. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

Using this model the following relative error
matrix AccR [%] at 0 °C was obtained:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.0197 0.0197 0.0197 0.0197 0.0197 0.0197
0.0197 0.0197 0.0197 0.0197 0.0197 0.0197
0.0197 0.0197 0.0197 0.0197 0.0197 0.0197
0.0197 0.0197 0.0197 0.0197 0.0197 0.0197
0.0197 0.0197 0.0197 0.0197 0.0197 0.0197
0.0197 0.0197 0.0197 0.0197 0.0197 0.0197

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The average error: S(0 °C) = 0.0197 %, and

maximal and minimal values of relative errors:

Smin(0 °C) = 0.0197 %, Smax(0 °C) = 0.0197 %
for this matrix are valid. Similar matrices and in-
dicators have been calculated at each temperature
point. In this way, we obtained better accuracy in
the neighborhood of 0 °C (in the range of tempera-
ture from 0 to −60 °C) (Fig. 10 and Fig. 11). Thus,
by changing the data format we obtained signifi-
cant improvement of modeling errors.

Fig. 10. Two-dimensional plot of relative errors at 0 °C.

Fig. 11. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

4.2. Resistors made of R324 ink
For resistors made of R324 ink (sheet resis-

tance Rsq = 104 Ω/sq) the mathematical model
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obtained in a similar way as in the case of R323
resistors, showed the following values of accu-
racy at –120 °C: the average error: S(−120 °C)
= −0.0222 %, and maximal and minimal values
of relative errors: Smin(−120 °C) = −0.6434 %,
Smax(−120 °C) = 0.6974 %. Similar matrices and
indicators have been calculated at each tempera-
ture point. The relative error matrix AccR [%] at
−120 °C is:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.1825 −0.3480 −0.1289 −0.5565 −0.6434 0.2357
−0.1824 −0.1199 −0.0146 −0.2953 −0.4095 −0.3292
0.0461 −0.1668 −0.1404 −0.2061 −0.2281 −0.3197
−0.1429 −0.0435 −0.0640 −0.1149 −0.2180 −0.5651
0.3660 0.1753 0.1787 0.1907 0.1040 −0.2173
0.6826 0.6607 0.6974 0.6618 0.5942 0.2461

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The plots of dimensional and temperature de-

pendence of relative errors are shown in Fig. 12
and Fig. 13, respectively. The accuracy of the be-
havioral model appears to be a little bit worse than
for resistors made of R323 ink below −140 °C.

Fig. 12. Two-dimensional plot of relative errors at
−120 °C.

4.3. Resistors made of R325 ink

For resistors made of R325 ink (sheet resistance
Rsq = 105 Ω/sq), the relative error matrix AccR [%]
at −180 °C is as follows:

Fig. 13. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

Fig. 14. Two-dimensional plot of relative errors at
−180 °C.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.3838 −0.8205 −0.3796 −0.4278 −0.1431 −0.0444
−0.5326 −0.3491 −0.2763 −0.0466 0.0400 −0.0041
0.0160 −0.3219 −0.2008 −0.1817 −0.1609 −0.0231
−0.3548 −0.1695 −0.3825 −0.2067 −0.2808 0.0644
0.3509 0.1204 0.1746 0.1006 0.1414 0.2398
0.7453 0.9202 1.0296 0.9672 0.7807 0.3676

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The average error: S(−180 °C) = 0.0102 %,
minimal and maximal values of relative errors:
Smin(−180 °C) = −0.8205 %, Smax(−180 °C) =
1.0296 % for this matrix are valid. Similar matrices
and indicators have been calculated at each tempe-
rature point.

The plots of dimensional and temperature de-
pendence of relative errors are shown in Fig. 14 and
Fig. 15, respectively. The accuracy of the R325 be-
havioral model appeared to be a little bit better than
for resistors made of R323 and R324 inks.

Fig. 15. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

4.4. Resistors made of DP1931ink
For resistors made of DP1931 ink (sheet resis-

tance Rsq = 103 Ω/sq) the following mathematical
model was obtained: P(T,l,w)=(553989024681897
9/34359738368*l+407189429514097/429496729
6*w-6980326931738757/137438953472-5126019
057908203/17179869184*l*w+67378514806735
61/34359738368*l*wˆ2-1074381341501717/1717
9869184*wˆ2+5183283981166013/27487790694
4*wˆ3-182745265658445/68719476736*wˆ4+25
05450511301973/17592186044416*wˆ5-5033373
366850799/34359738368*lˆ2+776882974360159
1/137438953472*lˆ3-2592295626746799/274877
906944*lˆ4+39010126886843/68719476736*lˆ5-

8108637093897161/137438953472*l*wˆ3+4566
919509270455/549755813888*l*wˆ4-781694010
7805669/17592186044416*l*wˆ5+47266386331
40861/17179869184*lˆ2*w-6227558645991857/3
4359738368*lˆ2*wˆ2+3747519747462157/68719
476736*lˆ2*wˆ3-2109662789128353/2748779069
44*lˆ2*wˆ4+7218129238341703/1759218604441
6*lˆ2*wˆ5-7282554847041023/68719476736*lˆ3
*w+4784959792798973/68719476736*lˆ3*wˆ2-5
745978039138385/274877906944*lˆ3*wˆ3+1614
557144356367/549755813888*lˆ3*wˆ4-55172151
26197517/35184372088832*lˆ3*wˆ5+303539466
295757/17179869184*lˆ4*w-3184430773706689/
274877906944*lˆ4*wˆ2+3816637668748727/109
9511627776*lˆ4*wˆ3-8566554726816813/175921
86044416*lˆ4*wˆ4+7310612332166731/2814749
76710656*lˆ4*wˆ5-584641277978719/549755813
888*lˆ5*w+6123643598655569/8796093022208
*lˆ5*wˆ2-7327678125959783/35184372088832*l
ˆ5*wˆ3+8213434998364339/281474976710656*l
ˆ5*wˆ4-3501782994106985/2251799813685248*l
ˆ5*wˆ5)*((((0.1815758610018955456632047e-10
*TEMP+0.8597882878894229400129041e-9)*T
EMP+0.5252185801276130554341446e-6)*TEM
P-0.2123441648718566170279953e-4)*TEMP+1
.000004314275278582968554).

The relative error matrix AccR [%] at –180 °C
is as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.1261 −0.2114 −0.1311 −0.2050 −0.2798 −0.2154
−0.1627 −0.1476 −0.1357 −0.2164 −0.3278 −0.2013
0.0249 −0.0997 −0.0560 −0.0830 −0.1235 −0.3306
−0.0471 0.0560 0.0390 0.0154 −0.1616 −0.2532
0.3225 0.2573 0.2825 0.2901 0.3490 0.0364
0.2606 0.4661 0.4945 0.4216 0.3258 −0.1662

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The average error: S(−180 °C) = −0.0011 %,

minimal and maximal values of relative errors:
Smin(−180 °C) = −0.3306 %, Smax(−180 °C) =
0.4945 % for this matrix are valid. Similar matrices
and indicators have been calculated at each tempe-
rature point. The plots of dimensional and tempe-
rature dependence of relative errors are shown in
Fig. 16 and Fig. 17, respectively.

4.5. Resistors made of DP1939 ink
For resistors made of DP1939 ink (sheet resis-

tance Rsq = 104 Ω/sq), the mathematical model,
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Fig. 16. Two-dimensional plot of relative errors at
−180 °C.

Fig. 17. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

obtained in similar way as in case of resistors made
of R323 ink, showed the following values of ac-
curacy at −80 °C: average error: S(−80 °C) =
0.0062 %, minimal and maximal values of relative
errors: Smin(−80 °C) = −0.2615 %, Smax(−80 °C)
= 0.4313 % for this matrix. The relative error ma-
trix AccR [%] at −180 °C is as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.1840 −0.1961 −0.1028 −0.2297 −0.2615 0.4161
−0.1806 −0.1506 −0.1884 −0.1702 −0.0708 0.4313
−0.1392 −0.1689 −0.0874 −0.1761 −0.2060 −0.0740
−0.1065 −0.0509 −0.0874 −0.1479 −0.1624 −0.2195
0.0787 0.0283 0.0378 0.0657 −0.0271 −0.0737
0.3337 0.3965 0.3717 0.3914 0.4171 0.2719

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Similar matrices and indicators have been cal-

culated at each temperature point. The plots of di-
mensional and temperature dependence of relative
errors are shown Fig. 18 and Fig. 19. The accuracy
of the behavioral model appeared to be a little bit
worse than for resistors made of DP1931 ink.

Resuming, one should state that the mean value
of modeling errors in all the cases is close to
zero. The largest deviations of the modeling errors
(Fig. 12, Fig. 14, Fig. 16 and Fig. 18) are appearing
in positive direction for short resistors, while for
long resistors the errors of modeling are leaning in
direction of negative values.

Fig. 18. Two-dimensional plot of relative errors at
−80 °C.

The average dispersion of errors for every group
of resistors was estimated at two accuracies of the
record of the approximating polynomials:
A – the coefficients of P(l,w) polynomial (2D) were
recorded as integer divisions and the coefficients of
Pr(T) polynomial (1D) had 25 meaningful decimal
digits,
B – coefficients of both polynomials P(l,w) and
Pr(T) had 7 meaningful decimal digits.
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Table 2. Maximal mean errors for examined type of resistors at 0 °C, −80 °C and −180 °C.

S [%] = max{|S|, |Smin|, |Smax|}
DP1931 DP1939 R323 R324 R325

A B A B A B A B A B

0 °C 8.3· 10 −4 7.86 0.018 0.280 0.019 1.08 0.016 6.36 0.007 1.54
−80 °C 0.21 7.92 0.431 0.620 0.648 1.14 0.735 6.55 0.567 1.69
−180 °C 0.49 7.97 3.190 3.200 1.470 1.44 1.702 6.14 1.029 1.93

Fig. 19. Plot of temperature dependence of relative er-
rors, average error – blue line, maximal error –
red line, minimal error – green line.

The obtained results were collected in Table 2.
Comparing these results one should state that the
number of significant digits of the polynomial co-
efficients has the essential influence on maximum
mistakes in resistance determination on the basis of
this mathematical model. It can be noticed that the
large influence appears particularly in the range of
0 to −80 °C what can be explained by the larger
sensitivity of 2D polynomial to the accuracy of
the record of its coefficients than that of the 1D
polynomial.

Therefore, in this paper we decided to record
polynomials as exactly as possible (case A), but our
detailed examinations show that taking 15 signifi-
cant decimal digits for both the polynomials still
provides acceptable accuracy.

5. Conclusions
In this work a new behavioral modeling method

of thick-film resistors with a large range of planar
dimensions and in a wide temperature range has
been presented. This method is based on resistance
measurement data. Because the temperature char-
acteristics for resistors made of different inks dif-
fer between themselves, they cannot be modeled by
one universal mathematical model. Therefore, ev-
ery type of resistors should be modeled separately.

Based on the experiments and calculations car-
ried out it is possible to state that the presented
modeling method has the following features:

• its average error of resistance determination
is close to zero in the whole studied tempe-
rature range for resistors made from differ-
ent inks,

• dispersion of errors for thick-film resistors
from various inks and with different dimen-
sions is close to zero in temperatures near
zero,

• dispersion of errors for thick-film resistors
of different types increases while tempe-
rature is decreased and below −160 °C it
reaches maximal values 1.4 %, 1.7 %, 1 %,
0.5 % and 3.2 % for R323, R324, R325,
DP1931, and DP1939, respectively,

• the number of meaningful digits of the poly-
nomial coefficients has the essential influ-
ence on the maximum error in resistance
determination on the basis of this mathe-
matical model. It can be noticed that the
influence is the most significant, particu-
larly in the range of temperature of 0 to
80 °C what can be explained by the larger
sensitivity to the accuracy of the record
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of the coefficients of 2D polynomial than
that of 1D polynomial,

• resistors of higher resistance demonstrate
larger increase of negative TCR coefficient
than resistors of smaller resistance values,

• modeling using this method has to be per-
formed only ones for a given type of
resistors,

• application of long data format and integer
numerical operations can significantly im-
prove the accuracy of calculations.

Outlining the above remarks it should be stated,
that the proposed method of dimensional and tem-
perature modeling of thick-film resistors ensures
good accuracy for all examined types of resistors
and can be used for analysis and design purposes.
The introduced mathematical model was exploited
while working out the behavioral circuit model for
SPICE – the electronic circuit design system [25].

Considering the problem of modeling of small
electronic components working at cryogenic tem-
peratures one should also have in mind the follow-
ing factors:

• measuring methods should not introduce
large errors (e.g. one should carry out re-
peated measurements at one point with the
averaging);

• calculations should be made with the accu-
racy as large as possible (selection of so-
called exact computational methods, the for-
mat of numerical data possible long – dou-
ble precision, applying the Horner’s rule).
The worked out models concern thick-film
resistors with a wide range of dimensions.
we suppose, that for chosen groups of resis-
tors, e.g. the power resistors, these models
will be simpler and not less accurate.
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