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1. Introduction
Skutterudite compounds named after Skutterud

region in Norway have the chemical formula M
X3, where M is a metal and X a pnictogen [1].
The filled skutterudites have the formula M T4
X12, where M can be an alkaline earth, lanthanide
or actinide ion, T is Fe, Ru, or Os, and X is P,
As, or Sb and crystallize in the cubic skutteru-
dite LaFe4P12 structure (space group Im3) [2].
The filled skutterudites attracted attention because
of their large thermoelectric potential as well
as of the rich variety of observed ground-state
properties [3]. Many of the extraordinary proper-
ties of these compounds are associated with M
ion that occupies the atomic “cage” in the bi-
nary (“unfilled”) CoAs3 type skutterudite struc-
ture. Investigation of the filled skutterudite com-
pounds remains an active field, because of their
interesting ground state behaviors which include
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unconventional super-conductivity [4, 5], mag-
netism [6, 7]. heavy fermions [8] and non-Fermi
liquid behavior [9]. We have prepared many filled
skutterudites with lighter lanthanide at high tem-
peratures and high pressures [10–12]. The physical
properties of the filled skutterudites depend on M
atom hybridization between f-electron states of the
M atom with the conduction electron states. The
structural properties of LuFe4P12 filled skutteru-
dites are determined using the neutron diffraction
technique [13]. Besides, one of the most important
properties is characterized by X-ray diffraction us-
ing CuKα radiation and silicon as a standard at am-
bient pressure [14].

The purpose of this work is to clarify the phys-
ical properties of filled skutterudite LuFe4P12 and
provide a comparative study of structural, elec-
tronic, elastic and thermodynamic properties, us-
ing the first principle calculations and following
full-potential linear muffin-tin orbital (FP-LMTO)
method within local density approximation (LDA)
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using exchange-correlation (XC) potential. The
organization of this paper is as follows: we describe
the FP-LMTO computational details in Section 2,
and in Section 3, the results and discussion of struc-
tural, electronic, elastic and thermodynamic prop-
erties are presented. Finally, conclusions are given
in Section 4.

Table 1. The number of plane wave (NPW), energy cut-
off (in Ry) and the muffin-tin radius (MTS) (in
a.u.), used in our calculations for LuFe4P12.

LuFe4P12

NPW
LDA 34412
LSDA 34412
Ecut-off (Ry)
LDA 124.1905
LSDA 130.1176
Atom
MTS (a.u.) Lu Fe p
LDA 3.384 2.055 2.055
LSDA 3.370 2.030 2.112

2. Computational method
It is of interest to find out the most conve-

nient method to know deeply the studied compound
properties and its behaviour. Therefore, our atten-
tion is centred on the atomic structure and dimen-
sions studied according to the methods using the
full potential linear muffin-tin orbital (FP-LMTO)
method augmented by a plane-wave (PLW) ba-
sis [15, 16] and implemented in the Lmtart com-
puter code [17]. In this method, the space is divided
into interstitial regions (IR) and non-overlapping
(MT) spheres centered on the atomic sites. In the
IR regions, the Fourier series represents the ba-
sic functions. Inside MT spheres, the basic set is
treated as a linear combination of radial functions
times spherical harmonics. In order to achieve a
satisfactory degree of convergence of energy eigen-
values, the wave functions in the interstitial regions
are expanded into plane waves with an energy cut-
off equal to 124 Ry and the number of plane wave
equal to 34412. The values of muffin-tin sphere
radius (MTS) are taken to be 338.4, 205.5

and 205.5 (pm) for Lu, Fe and P, respectively.
The valence wave functions inside the spheres
are expanded up to lmax = 6. The exchange-
correlation (XC) effects are treated within a lo-
cal density approximation (LDA) [18, 19]. The
K integrations over the Brillouin zone (BZ)
are performed up to (6 6 6) grid (yielding
18 k-points in the irreducible Brillouin zone
(IBZ) using the tetrahedron method [20]. The
values of the spherical radius (MTS), energy
cut-off and the number of plane waves (PLWS)
found in the previous calculations are given in
Table 1.

3. Results and discussions
3.1. Structural properties

The LuFe4P12 compound crystallizes in the cu-
bic space group Im3 (#204). The Lu, Fe and P
atoms are located at (0 0 0), (1/4 1/4 1/4) and
(0 y z) Wyckoff positions, respectively. The crys-
tal structure of LuFe4P12 is shown in Fig. 1. The
skutterudite structure is characterized by two non-
equivalent atomic positions y and z, which are not
fixed by symmetry. The y and z positions have
been optimized by minimizing the total energy
with keeping the volume fixed at the experimen-
tally observed value to compare the calculated val-
ues with other theoretical and experimental data of
the ternary skutterudites LuFe4P12 as given in Ta-
ble 2. The optimized values of y and z are used
to calculate the total energy at different unit-cell
volumes. Fig. 2 shows the calculated total energies
as a function of the unit cell volume for LuFe4P12
local density approximation (LDA). The curve of
the total energy versus unit cell volume is fitted to
Murnaghan’s equation of state (EOS) [21] to deter-
mine the ground state properties, such as the equi-
librium lattice constant a0, the bulk modulus B0 and
its pressure derivative B′. The calculated values of
y, z, a0, B0 and B′ for the studied compound are
summarized in Table 2.

3.2. Electronic properties
3.2.1. Band structure

The band structure of the filled skutterudites
under study, which was calculated as shown in
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Table 2. Lattice constant a0 (in Å), atomic positions y and z for P atom, bulk modulus B (in GPa), its pressure
derivative B′ and the minimum energy at the equilibrium E0 (in Ry) for LuFe4P12. Experimental data are
quoted for comparison.

LuFe4P12 a0 Y Z B B
′

E0

Present 7.6747LDA 0.3503LDA 0.1491LDA 193.399LDA 3.4502LDA −47493.9661
7.6527LSDA 209.6995LSDA 3.3027LSDA −47493.96166

Exp.
(UFe4P12)[36] 7.7729
(UFe4P12)[13] 7.2228 0.1494 0.3506

Other. calc.
(LuFe4P12)[42] 7.7771 (3)
(PrFe4P12)[34] 7.6776 0.3525 0.151 186.7916 3.6965 −236821.45838
(UFe4P12)[35] 7.6510 0.3503 0.1491 199.227 3.585

(La Fe4P12)[37] 7.8316 0.3539 0.1504
(Ce Fe4P12)[38] 7.7920 0.3522 0.1501

Fig. 1. The model of filled skutterudite.

Fig. 2. The variation of total energy with unit cell vol-
ume for LuFe4P12.

Fig. 3, yields an indication of the valence band
(VB) and conduction band (CB); the Fermi level
(EF) is indicated by a horizontal dotted line. The
band structure for LuFe4P12 is shown in Fig. 3 for
spin-up and spin-down electrons. The band struc-
ture of LuFe4P12 appears above the Fermi level
at Γ point for both spin up and spin down elec-
trons.The region is mainly formed by the valence
4f-electron states of Lu with a very small contri-
bution of the 3d states for the channel spin (Fig. 3).
A strong peak due to Lu-4f states is 0.168 eV in the
spin-up channel (Fig. 3a). The conduction region is
mainly due to Lu-4f states that give rise to a sharp
peak at 0.150 eV in the spin down link channel
(Fig. 3b), To understand the electronic properties of
LuFe4P12, the calculation of electronic band struc-
ture along the direction of the vertices of symmetry
in the Brilllouin zone is shown in Fig. 3 for the two
spin channels. From the band structure plots, we
notice that there is an overlap between the conduc-
tion and valence bands for both spin up and spin
down, which means that this compound has metal-
lic character.

3.3. Elastic properties

The elastic properties provide information
about capability of materials deformation under
applied external forces. Therefore, the stability,
stiffness and structural phase of materials are
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Fig. 3. Band structure obtained by means of LSDA.

changed. For our studied compound, which has
a cubic crystal structure, there are only three
different symmetry elements: C11, C12 and C44
which in turn represent three coupled equali-
ties: C11 = C22 = C33, C12 = C23 = C31 and
C44 = C55 = C66. The elastic constants Ci j are ob-
tained by calculating the total energy as a func-
tion of volume conserving strains using the Mehl
method [22], which has been applied with success-
ful results in previous works on some skutterudite
compounds [23–26]. By imposing the conserva-
tion of volume of the sample under pressure ef-
fect, the first equation involves the elastic moduli
(C11 − C12) which are related to the bulk modulus
B by the following expression:

B = (C11 +2C12)/3 (1)

The second one involves applying volume conserv-
ing orthorhombic strain tensor:

ε̄ =

 δ 0 0
0 δ 0
0 0 1

(1+δ 2)
−1

 (2)

The total energy is influenced by the application of
this strain and is expressed as:

E(δ )=E(−δ )=E(0)+6(C11−C12)V0δ
2+O(δ 4)

(3)

For identification of C44, we used a monoclinic
strain conserving volume defined as:

ε̄ =

 1 δ

2 0
δ

2 1 0
0 0 4

(4−δ 2)

 (4)

which changes the total energy into:

E(δ ) = E(−δ ) = E(0)+
1
2

C44V0δ
2 +O(δ 3) (5)

The corresponding energy results then from the
stress applied to the orthorhombic (a) and mono-
clinic (b) phase of the studied compound, that is
LuFe4P12. Combining equation 1 and equation 4,
one can easily determine the two elastic constants
C11 and C12, while the third elastic constant C44
is derived by equation 5. From the elastic con-
stants we obtain the anisotropy parameter A (for
an isotropic crystal, A is equal to 1, while an-
other value greater or less than 1 means that it is
an anisotropic crystal) which deviates much from
unity, that is characteristic of profound anisotropy.
Other important mechanical quantities, such as the
shear modulus G, Young’s modulus E and Pois-
son’s ratio ν are often measured for polycrystalline
materials when investigating their hardness, and
calculated in terms of the computed elastic con-
stants Cij using the following relations [22–24]:

A =
2C44

C11−C12
(6)

ν =
3B−E

6B
(7)

E =
9BG

3B+G
(8)

G =
C11−C12 +3C44

5
(9)

where B is bulk modulus given by equation 1.
From these results, we find that the stability cri-
teria [25, 26]; C11 − C12 > 0, C11 > 0, C44 > 0,



Investigations of structural, elastic, electronic and thermodynamic properties of. . . 871

(C11+2C12) > 0 and C12 < B < C11, are satis-
fied for the studied skutterudites, and, therefore, it
is elastically stable.

The calculated elastic constants Cij, bulk modu-
lus B, shear modulus G, Young’s modulus E, Pois-
son’s ratio ν, the anisotropic parameter A and B/G
rations of LuFe4P12 at different pressures using
LDA calculation are summarized in Table 3. We
have presented our calculated values of the elas-
tic constants C11, C12, C44, bulk modulus B, shear
modulus G and Young’s modulus E. The variation
of the relative energy with respect to the square
of tetragonal and monoclinic strains, illustrated in
Fig. 4, has been used for determining C11 − C12
and C44 in the pressure range from 0 GPa to 50 GPa
with steps of 10 GPa. It is seen that the calculated
total energy varies linearly with the applied stress.
The calculated slopes are found to be equal to 53.5
and 21.1 Ry for the orthorhombic and monoclinic
constraints, respectively, at zero pressure. The vari-
ations of C11, C12, C44 and the bulk modulus B,
shear modulus G and Young’s modulus E under
pressure effects are presented in Fig. 5. Our results
show that all elastic constants increase as the pres-
sure increases, C11 is more sensitive to the change
in pressure compared to the other elastic constants
C12 and C44 which are less sensitive to the change
of pressure. In Table 3, the value of bulk modu-
lus B calculated by expression 1 at P = 0 GPa is
documented. It is noted that the calculated value is
nearly the same as that obtained from fitted Mur-
naghan’s equation of state.

A typical Poisson’s ratio value of 0.25 suggests
a high ionic contribution in intra-atomic bond-
ing for this compound. For LuFe4P12 skutterudite
alloy, it varies between 0.2884 and 0.3416 (Ta-
ble 3) for various pressures indicating that this
compound is ionic. The Young’s modulus of ma-
terials is defined as the ratio of linear stress and lin-
ear strain, which gives information about the stiff-
ness. The obtained values of the Young’s modu-
lus of our compound are higher than 90 GPa; thus,
this material will show large stiffness. One of the
most important properties of crystalline solids is
the elastic anisotropy ratio represented by equa-
tion 6. This property has an important implication

in engineering science since it is highly correlated
with the possibility to introduce microcracks in
materials [27]. Essentially, all known crystals are
elastically anisotropic. For isotropic crystals A
equals to 1.0, while any value smaller or larger than
1.0 indicates anisotropy. The magnitude of devi-
ation from 1.0 is a measure of degree of elastic
anisotropy possessed by the crystal. In our case, the
anisotropic A values vary from 1.3752 to 2.3184
at various pressures, indicating that the material is
characterized by a profound anisotropy. According
to the Pugh’s empirical formula [28], the critical
value which separates ductile and brittle materials
is around 1.75. If B/G > 1.75, the material be-
haves in a ductile manner; otherwise the material
behaves in a brittle manner. In our case, the ratio
of B/G values varies from 2.0949 to 2.8224 at var-
ious pressures, revealing the slight ductility of this
compound.

Fig. 4. Energy as a function of square orthorhombic and
monoclinic strain used to determine C11 − C12
and C44.

3.4. Debye temperature
The Debye temperature θD is one of the most

important parameters that determines the thermal
characteristics of materials. It is used to distinguish
between the high and low temperature regions in
solids. One of the standard methods to calculate the
Debye temperature θD is from the elastic constants
data using the following expression [29]:

θD =
h
kB

[
3n

4πVa

] 1
3

νm (10)
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Table 3. Calculated elastic constants C11, C12, C44 (in GPa), bulk modulus (in GPa), Young and shear modulus E
in GPa, G (in GPa), Poisson’s ratio ν, and the anisotropic parameter A for LuFe4P12.

P C11 C12 C44 B G E ν A B/G

0 278.9173 149.741 115.2731 192.80 94.99906 244.791512 0.2884 2,3184 2.02949
(PrFe4P12)[40] 437.557 1.408 156.288 186.791 169.00246 389.53 0.931 0.152 1.10
(UFe4P12)[41] 524.11 36.787 386.83 199.227 329.56 637.83 1.59 −0.003 0.60

+10 333.5667 173.986 116.241 227,18 101.6607 265.3951 0.3053 1.4568 2.2346
+20 375.7871 204.386 124.793 261,52 109.1559 287.4720 0.3168 1.4562 2.3958
+30 416.978 235.347 137.9287 295,89 119.0835 314.9932 0.3226 1.5188 2.4847
+40 458.5137 266.178 132.2462 330,29 117.8149 315.8857 0.3406 1.3752 2.8035
+50 499.9092 297.053 147.7487 364,71 129.2205 346.7134 0.3416 1.4541 2.8224

Fig. 5. Total elastic constants C11, C12, C44 (in GPa),
bulk modulus (in GPa), shear modulus G (in
GPa) and Yong’s modulus E (in GPa) as a func-
tion of pressure.

where h is Planck’s constant, kB is the Boltzmann
constant, Va is the atomic volume and n is the num-
ber of atoms per unit volume. The average sound
velocity νm in the polycrystalline material is given
by Voigt [30]:

νm =

[
1
3

(
2

ν3
t
+

1
ν3

l

)]− 1
3

(11)

where νl and νt are the longitudinal and transverse
sound velocities in an anisotropic material, which
can be obtained using the shear modulus G and the
bulk modulus B from Navier’s equations [31]:

νl =

(
3B+4G

3ρ

) 1
2

(12)

νt =

(
G
ρ

) 1
2

(13)

The calculated sound velocities and Debye tem-
perature as well as the density at different pressures
using LDA approximation are given in Table 4. The
results indicate that the values of νl, νt, νm and θD
increase as the pressure increases. To the best of
our knowledge there are no experimental and other
theoretical data available in the literature for com-
parison, so we consider the present results as a pre-
diction study, carried out for the first time, which
still awaits an experimental confirmation. Fig. 6.
shows the variation of the longitudinal, transverse
and medium speed as functions of pressure. It is
clear that the longitudinal speed increases linearly
with increasing pressure in a very steep slope of
about 45.03 in comparison to the small slope for
the average and transverse velocities are of the or-
der of 13.33 and 15.64, respectively.

3.5. Thermodynamic properties
To investigate the thermal properties of

LuFe4P12 compound at high temperature and high
pressure, we have applied the quasi-harmonic
Debye model as implemented in the Gibbs pro-
gram [32]. The non-equilibrium Gibbs function
G∗(V, P, T) takes the form:

G∗(V, P, T ) = E(V )+PV +Aν ib[θ(V );T ] (14)

where E(V) is the total energy for LuFe4P12, PV
is the hydrostatic pressure condition, θ(V) is the
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Table 4. Longitudinal, transverse and average sound ve-
locities (νl, νt, νm), (in ms−1), and Debye tem-
perature (θD, in K) calculated with LDA at dif-
ferent pressures for LuFe4P12.

P νl νt νm θD

(GPa) (ms−1) (ms−1) (ms−1) (K)

0 7665.355 4180.036 4662.204 624.7651
10 8167.05 4324.112 4833.193 675.963
20 8652.573 4480.683 5015.611 723.5
30 9144.628 4680.001 5242.667 762.3
40 9467.877 4655.000 5227.099 800.3
50 9938.230 4875.127 5474.970 836.25

Fig. 6. Pressure dependence of the longitudinal, trans-
verse and average sound velocity (vl, vt and vm
in m/s) for LuFe4P12.

Debye temperature, and Aνib is the Helmholtz free
energy, which can be written as [32, 33]:

Avib(θD,T ) =nKBT
[

9θD

8T
+3ln(1− e−θD/T )

−D
(

θD

T

)]
(15)

where n is the number of atoms per formula unit, D
(θ/T) is the Debye integral. The Debye temperature
θ is given as [33]:

θD =
h̄

KB
(6π

2nV
1
2 )

1
3 f (σ)

√
BS

M
(16)

where M is the molecular mass per unit cell and
BS is the adiabatic bulk modulus, which is approx-
imately given by static compressibility [32]:

Bs ≈ B(V ) =V
d2E(V )

dV 2 (17)

f(σ ) is given in the literature [34, 35]:

f (σ)=

3

[
2
(

21+σ

31−2σ

) 3
2

+

(
11+σ

31−σ

) 3
2
]−1


1
3

(18)
where σ is Poisson ratio. Therefore, the non-
equilibrium Gibbs function G*(V, P, T) as a func-
tion of (V, P, T) can be minimized with respect to
volume V as:[

δG∗(V, P, T )
δV

]
P,T

= 0 (19)

The thermal equation of state (EOS) V(P, T) can
be obtained by solving equation 20. The isothermal
bulk modulus BT is given by Blanco et al. [32]:

BT (P, T ) =V
(

δ 2G∗(V, P, T )
δ 2V

)
P,T

(20)

The thermodynamic quantities, e.g. heat capac-
ities CV at stable volume and CP at stable pressure,
entropy S, and internal energies have been calcu-
lated by applying the following relations [32]:

CV = 3nKB

4D
(

θD

T

)
−

(
3θD
T

)
eθD/T −1

 (21)

CP =Cv(1+αγT ) (22)

S = nK[4D(θ/T )−3ln(1− e−θ/T )] (23)

U = nkT
[

9
8

θ

T
+3D

(
θ

T

)]
(24)

where α is the thermal expansion coefficient and
γ is the Grüneissen parameter which is given by
Blanco et al. [32]:
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Fig. 7. Pressure and temperature dependence of the rel-
ative volume V/V0 for LuFe4P12. (V0 is the
equilibrium volume).

Fig. 8. The variation of the bulk modulus as a func-
tion of temperature at different pressures for
LuFe4P12.

α =
γCV

BT T
(25)

γ =−d lnθ(V )

d lnV
(26)

The thermal properties are determined in
the temperature range of 0 to 3000 K in LDA
calculation. The pressure effect is studied in 0 to
50 GPa range for LuFe4P12. The dependence of the
primitive cell volume of temperature, using LDA,

Fig. 9. The variation of the heat capacity Cν with tem-
perature at different pressures for LuFe4P12.

Fig. 10. The heat capacity at a constant pressure CP
versus temperature at different pressures for
LuFe4P12.

is shown in Fig. 7. The ratio V/V0 decreases almost
linearly with increasing temperature. For a given
temperature, the primitive cell volume decreases as
pressure increases. Fig. 8 shows the bulk modulus
variation versus temperature at a given pressure.
One can notice that the bulk modulus, a property
of a material which defines its resistance to volume
change when compressed, is nearly constant from
0 to 100 K and decreases linearly when increasing
temperature from T > 100 K. The compressibility
increases with temperature increase at a given
pressure and decreases with pressure at a given
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Fig. 11. The variation of the thermal expansion coeffi-
cient α as a function of temperature at different
pressures for LuFe4P12.

Fig. 12. The variation of the Debye temperature as a
function of temperature at different pressures
for LuFe4P12.

temperature. These results show that the effect of
increased pressure on the material is the same as
that of temperature. At 300 K and zero pressure,
the bulk modulus for our compound is 190.4 GPa.
The variation of the heat capacities CV versus
temperature at 0, 10, 20, 30, 40 and 50 GPa
pressures is shown in Fig. 9. It is shown that with
increasing temperature, CV values increase rapidly
at a lower temperature, then they increase slowly
at the high temperature and tend to the Petit and
Dulong limit [39], which is common to all solids
at high temperature. Thus, when T < 1000 K,

Fig. 13. The variation of Helmholtz free energy A as
a function of temperature at different pressures
for LuFe4P12.

Fig. 14. Gibbs energy calculated as a function of tem-
perature at different pressures for LuFe4P12.

the heat capacity CV depends on both tempera-
ture and pressure effects. When the temperature
is constant, the CV decreases with the applied
pressures; CV tends to approach
422.61 (J·mol−1·K−1). The variation of the
heat capacity CP with pressure and temperature
in the ranges of 0 to 50 GPa and 0 to 3000 K is
shown in Fig. 10. With increasing temperature,
the variation of CP values at lower tempera-
ture is similar to that of CV. However, in the
high-temperature-range, the change tendency of
CP exhibits apparently different features under
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Fig. 15. The variation of the entropy (S) as a func-
tion of temperature at different pressures for
LuFe4P12.

Fig. 16. The variation of the internal energy as a func-
tion of temperature at different pressures for
LuFe4P12.

different pressures. CP values decrease with
increasing pressures and do not converge to a con-
stant value. The CP increases at higher temperature.
Fig. 11 shows the variation of volume expansion
coefficient α as a function of temperature and
pressure, using LDA. It is shown that at a given
pressure, α increases sharply with increasing of
temperature up to 500 K. When T > 500 K,
α starts increasing gradually with temperature
and the tendency of the increment becomes very
moderate, which means that the temperature

dependence of α is very small at high temperature.
For a given temperature, α decreases dramatically
with increasing of pressure. Using LDA, α in-
creases sharply with the increase of temperature
up to 200 K. Above this temperature, α tends
gradually to a linear increase with temperature.
However, the increment becomes moderate, which
means that the temperature dependence of α is
very small at high temperature. At 300 K and zero
pressure, the value of volume expansion coefficient
α is 2.04466 × 10−5 K−1. Fig. 12 displays the
dependence of Debye temperature θD on tempera-
ture and pressure. It can be seen that θD is nearly
constant from 0 to 200 K and decreases linearly
with increasing of temperature from T > 200 K.
It is also shown that when the temperature is
constant, the Debye temperature increases almost
linearly with applied pressure. Our calculated θD
at zero pressure and 300 K temperature equals to
623.78 K. This might be an indication that the
quasi-harmonic Debye model is a very reasonable
alternative to account for the thermal effects at
a low cost in terms of computational time. The
pressure dependence of Helmholtz free energy A
for LuFe4P12 at different temperatures is depicted
in Fig. 13; the free energy A decreases gradually
with increasing of temperature at a given pressure
and decreases with pressure at a given temperature.
Fig. 14 displays the dependence of the Gibbs
free energy G on temperature and pressure. It can
be seen that the Gibbs free energy G is nearly
constant from 0 to 100 K and decreases linearly
with increasing of temperature from T >100 K.
It is also shown that when the temperature is
constant, the Gibbs free energy G increases
almost linearly with the applied pressure. The
pressure-dependence of entropy for LuFe4P12
under different temperatures is depicted in Fig. 15.
The entropies decrease with pressure and increase
with temperature. Obviously, the entropy is more
sensitive to the temperature than the pressure.
The calculated internal energy for LuFe4P12 as
a function of pressure for different temperatures
is depicted in Fig. 16. It can be seen that the
total internal energy increases with pressure and
temperature. It is more sensitive to the temperature
than the pressure.
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4. Conclusions
In this work, we have studied the structural,

elastic, electronic and thermodynamic properties
of the filled skutterudite LuFe4P12 using the
FP-LMTO method within the LDA calculations.
The calculated lattice constants are in good agree-
ment with the other available data. The computed
spin-polarized band structure for LuFe4P12 exhibits
metallic character. The elastic constants Cij, bulk
modulus B, shear modulus G, Young’s modulus
E and Poisson’s ratio ν of LuFe4P12 compound
have been calculated versus hydrostatic pressure
up to 50 GPa using LDA calculation. The calcu-
lated Poisson ratio ν of LuFe4P12 at various pres-
sures is around 0.3. This indicates that this com-
pound is highly ionic. The obtained values of the
Young’s modulus of our compound is higher than
90 GPa; thus, this material will show large stiff-
ness By analyzing the B/G ratio, we conclude that
LuFe4P12 can be classified as a ductile material.
The anisotropy factor suggests that LuFe4P12 com-
pound exhibits anisotropic elasticity. Furthermore,
we have estimated the sound velocities (vl, vt and
vm) and the Debye temperature for LuFe4P12 with
pressure in the ranges of 0 to 50 GPa. Through
the quasi-harmonic Debye model, the dependence
of the primitive cell volume, expansion coefficient
α, bulk modulus, heat capacity, Debye temperature
θD, Helmholtz free energy A, Gibbs free energy G,
entropy S and internal energy U on temperature and
pressure have been obtained successfully.
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