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It has not been possible to transform resistivity models in terms of magnetic field in order to account for variation of giant
magnetoresistance (GMR) with external magnetic field, which would have led to determination of material properties. This
problem is approached mathematically via variation calculus to arrive at an exponential function that fits observed GMR values.
Using this model in free electron approximation, the mean Fermi vector, susceptibility and total density of states of a number of
metallic multilayers are determined from their reported GMR values. Susceptibility is found to depend on interface roughness
and antiferromagnetic (AF) coupling; thus, it gives qualitative measure of interface quality and AF coupling. Comparison of
susceptibilities and GMRs of electrodeposited and ion beam sputtered Co/Cu structures shows that a rough interface suppresses
GMR in the former but enhances it in the latter.
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1. Introduction

Perpendicular and in-plane electronic transport
in metallic multilayers (MML) have been modelled
in classical [1–3] and quantum [4–6] formalisms.
Though these resistivity models give good account
of the giant magnetoresistance (GMR), especially
as functions of thickness, interface roughness and
mean free path [3, 6], experimental result is al-
ways a function of magnetic field B and none of
the resistivity models can be expressed in terms of
B to account for this variation. The reason is that
the knowledge of B dependence on angle Θ be-
tween magnetizations of the ferromagnetic layers
is required [3]. Θ itself, is determined by Zeeman
anisotropy and exchange energies, which are de-
pendent on the properties of involved system and
prevailing conditions. For this reason, in models,
where Θ features explicitly, arbitrary values are as-
signed to it [3].

Experiments show that GMR reduces with in-
creasing magnetization up to a saturation field,
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where further magnetization is not possible. Going
by the behavior of metals in magnetic field, such
change is associated with redistribution of spin up
and spin down electrons. The redistribution is pro-
portional to magnetization, with Pauli susceptibil-
ity as a proportionality constant. Therefore, at the
saturation field this spin redistribution ceases or
rather attains a constant value since further mag-
netization is not possible and the GMR attains its
asymptotic (maximum) value. If there was a model
that showed a response of GMR magnitude to B,
then both quantitative measure of spin redistribu-
tion and susceptibility of the involved multilayer
could be deduced. Such model would be a charac-
terization tool.

If any of the established resistivity models in-
cluded magnetic field explicitly, it would have been
easy to describe GMR variation with B. However,
since each of the resistivity models gives quantita-
tive values that are implemented in the magnetore-
sistance equation, it is possible to use the latter to
get the response of GMR to magnetic field. In this
paper, such model is presented and used to deduce
the size of spin redistribution, susceptibility and
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effective Fermi vector of some multilayers from
their reported giant magnetoresistances.

2. Method
What follows is built on these premises: (i) re-

sistivity is a function of magnetic field and tem-
perature T; (ii) scattering processes responsible for
GMR are assumed. The first is borne out of experi-
ments and the second ensures implicit inclusion of
bulk and interface scatterings, which the various re-
sistivity models account for. In addition, no mea-
surement geometry is preferred since the focus is
on the magnitude of GMR.

At a given temperature the standard MR
equation:

R(B,T ) = 1− ρ↑↑ (B,T )
ρ↑↓ (Bo,T )

(1)

where ρ↑↑(B,T) is parallel alignment resistivity at
field B and temperature T and ρ↑↓(Bo,T) is antipar-
allel alignment resistivity at the reference field Bo
and temperature T. Equation 1 can be presented in
the form:

ln(1− x) =−x− x2

2!
− x3

3!
− . . . (2)

where x = ρ(B)/ρBo. The later denotations have
been used for parallel and antiparallel resistivity
since Bo and T are fixed. Equation 2 holds for a
number |x| 6 1 and is physically admissible in the
present case since GMR lies between 0 and 1. The
expansion may be approximated to a linear func-
tion of B since higher powers tend to zero and phys-
ically correspond to deviations from Ohm’s law.
Therefore, it is reasonable to consider the line seg-
ment linking two points in x vs. B plane given by:

ds =
(

1+ x
′2
) 1

2
dB (3)

where x
′
= 1

ρBo

dρ(B)
dB .

The corresponding Euler-Lagrange equation
gives resistivity:

ρ (B) = ρBo +αρBo (B−Bo) (4)

Here α is a magnetic field coefficient of resistivity.
If Mathiessen’s rule is assumed valid in a metal-
lic multilayer, contributions by thermal excitations
can be added to equation 4. The contributions in-
clude phonon scattering which is proportional to
T3 [7], magnon scattering proportional to T2 [8]
and Bragg scattering which is proportional to T and
defines “ideal resistivity”. However, as temperature
is fixed, ρBo at prevailing temperature accommo-
dates their effects.

Now, normalizing equation 4 with zero field re-
sistivity, ρo, and using ln(1−x)∼=−x (equation 2)
we have:

R(B) = RBo exp [α lnRBo(B−Bo)] (5)

as the model for variation of GMR with magnetic
field. RBo is GMR at a reference field, α′ =αlnRBo
is magnetic coefficient of GMR. GMR may be re-
ported for positive range of field or in the range
of −B to B, in which case the left region is just
an image of the right, hence, characteristics of the
structure are completely embodied in the right re-
gion, i.e. the positive range. In either case the stan-
dard magnetoresistance equation applies and, con-
sequently, equation 5 is valid. The model is a so-
lution to the initial value problem, which is exactly
what GMR is: a drastic change from initial resistiv-
ity, thus, it has the series form:

R(B) =
∞

∑
n=0

an (B−Bo)
n (6)

where an = (n!)−1dnR(B)/dBn.
In light of GMR being a function of B, the co-

efficient shows the ease a multilayer is magnetized.
The exponent αB is analogous to χB, i.e. the mag-
netization of a material, where χ is susceptibility.
The magnetization saturates at the saturation field
Bs at which there is no further redistribution of spin
channels, otherwise the magnetization would in-
crease indefinitely with increasing B. It is at this
point that GMR attains asymptotic value and par-
allel alignment resistivity is half the antiparallel
alignment value [9]. Thus, α′ is interpreted as ra-
tionalized susceptibility and Bs is taken to be the
rationalizing factor such that:
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α
′
=

χp

Bs
(7)

χp is the spin paramagnetic susceptibility caused by
itinerant electrons. It should be noted that the Lan-
dau component of the susceptibility is neglected, as
it is much smaller than χp for free electrons and in-
versely proportional to effective electron mass. The
spin redistribution follows from [10]:

M = µB

(
N↑−N↓

)
= χp (B−Bo) (8)

where µB is the Bohr magneton and N↑,↓ the num-
bers of spin-up and spin-down electrons. Conse-
quently, the effective Fermi vector, kF, in the mul-
tilayer and density of states, D(EF), at Fermi level
are given by [10]:

kF =
4π2χpm2c2

m∗e2 (9)

and

D(EF) =
χp

2µ2
B

(10)

Here, m, m∗ are electron mass and effective elec-
tron mass, c is the speed of light and e electronic
charge. Mathematically, equation 8 warrants con-
tinuous increment in magnetization and spin re-
distribution with increasing magnetic field, how-
ever, the physical constraint of saturation field im-
poses maximum admissible value on them. That
is, at saturation field, the magnetization and N↑ –
N↓ have maximum values. The case of magneti-
zation is obvious from magnetization curve of a
multilayer. Therefore, with equation 7 and equa-
tion 8, the model can be expressed in terms of
magnetization:

R(B) = RBo expaM (11)

where a = lnRBo/Bs.

3. Application
Here, we report the results of the application

of equation 5, 7 to 10. The material properties
of interest are susceptibility, spin redistribution,
effective Fermi vector and density of states of

some reported multilayers. Our case studies are
Co/Cu [11, 13], Co/Ag/NiFe/Ag [12] and
Fe/Cr [9]. The model equation 5 was imple-
mented in an optimization program involving the
Levenberg-Marquardt method that used reported
GMR of the structures to deduce the magnetic
coefficient α′. The latter, gave the susceptibility
and spin redistribution through equation 7 and
equation 8. The Fermi vectors and density of states
were evaluated in free electron approximation in
which effective electron mass was taken as equal
to free electron mass (9.1 × 10−31 kg) irrespective
of electron spin. In case, where GMR was given
in the field range of –B to B, only the right region
was considered since the left part was a mirror
image and did not affect properties of the system.
The results are summarized in Fig. 1 to Fig. 4,
Table 1 and Table 2.

Fig. 1. GMR of Co(10 Å)/Cu(10 Å) at 4.2 K and 0 GPa.
Dotted line is the value reported in the liter-
ature [13]. Solid line is obtained from the re-
sponse model.

The optimization program was implemented on
each of the structures to determine their magnetic
coefficient α. All the fits had coefficient of deter-
mination of 0.998 and chi-square well below 0.05
alpha limit. Fig. 1 is an example of such fit with
chi-square of 0.012. In every case, instead of fix-
ing RBo to an obvious literature value, it was made
adjustable. The deduced values showed minimal
deviations from the real ones, for instance RBo for
the sample in Fig. 1 had residual of −0.05. More-
over, there were no significant changes in the fit
and α′ when RBo was fixed to observed values.
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Table 1. Magnetic coefficient (α′) of investigated multilayers.

Multilayer ∗α(T−1) Geometry

Electrodeposited [11]
Co(2 nm)/Cu(tCu)|300

−1.40 (tCu = 1.0 nm)
−1.72 (tCu = 3.2 nm)

CIP
CIP

V-grooved substrate [12]
Co/Ag/NiFe/Ag

−2.95
−3.03

CIP
CAP

Ion beam sputtering [13]
Co(10 Å)/Cu(10 Å)|15

−0.72 (at 0 GPa)
−0.89 (at 2 GPa)

CIP
CIP

Molecular beam epitaxy [9]
Fe(30 Å)/Cr(9 Å)|40

−0.319 CIP

∗The negative sign shows that GMR is a decay function of B but not that α is negative which would have led to
unacceptable negative parameters in Table 2.

Table 2. Susceptibility, Fermi vector and density of state of investigated multilayers.

Multilayer Susceptibility
χp

Fermi vector
(1014 cm−1)

Density of states
(1046 J−1·m−3)

Electrodeposited [11]
Co(2 nm)/Cu(tCu)|300

1.87 (tCu = 1.0 nm)
2.29 (tCu = 3.2 nm)

2.62
3.21

2.18
2.66

V-grooved substrate [12]
Co/Ag/NiFe/Ag

1.03 (CIP)
1.06 (CAP)

1.44
1.49

1.19
1.23

Ion beam sputtering [13]
Co(10 Å)/Cu(10 Å)|15

0.69 (0 GPa)
0.91 (2 GPa)

0.968
1.28

0.803
1.05

Molecular beam epitaxy [9]
Fe(30 Å)/Cr(9 Å)|40

0.64 0.448 0.371

Fig. 2. Redistribution of spin channels in
Fe(30 Å)/Cr(9 Å)|40 (original multilayer from
the literature [9]).

On this account, the model describes very well
the variation of GMR with magnetic field. Equa-
tion 11 presents an alternative approach with simi-
lar results since αM reduces to the argument of the

Fig. 3. Redistribution of spin channels in
Co(2 nm)/Cu(3.2 nm)|300 (original multilayer
from the literature [11]).

exponential term in equation 5 through equation 7,
8 and α = lnRBo/Bs. Fig. 2 to Fig. 4 are the spin
redistributions in Fe/Cr and Co/Cu that were eval-
uated with the determined α′ and equation 7 and
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Fig. 4. Redistribution of spin channels in
Co(2 nm)/Cu(1 nm)|300 (original multilayer
from the literature [11]).

equation 8. Mathematically, equation 8 suggests a
continuing increase of spin redistribution and mag-
netization as long as N↑ > N↓ (which holds true
for metals), if we neglect the observable fact that
magnetization always saturates. This physical con-
straint was imposed on the referenced equation for
the systems in Fig. 2 to Fig. 4 and the mathemati-
cal character of equation 8 was well defined at low
fields. In Fig. 2, the spin redistribution levels off at
20 KG, where Fe30 Å/Cr9 Å|40 attains maximum
GMR [9]. Using Stoner criterion, a probable reason
for this is that the magnitude of the shift in energy
|µBB| cannot exceed the zero field energy, other-
wise it would result in a limitless shift in energy of
the conduction electrons with the implication that
electrons may escape the structure at some large
field. In other words, up-spin energy E↑ = E(k) –
µBB cannot be less than zero and down-spin en-
ergy E↓ = E(k) + µBB cannot exceed twice the
zero field energy, E(k). Then, at saturation field,
µBB = E(k) which implies that zero field energy
determines saturation field. At any instance of ap-
plied field, the sum of energies of up- and down-
spin electrons is twice E(k). This is a consequence
of Pauli exclusion principle and Fermi vector be-
ing intrinsically, the average of up- and down-spin
Fermi vectors [15]. The redistribution of spins in
Fig. 3 and Fig. 4 increases, as expected, with mag-
netization up to 7.5 kOe at which the respective
GMR tends towards its asymptotic value [11]. This
field was used in determining the susceptibilities

of the concerned structures. These figures demon-
strate that not only is spin redistribution present in
GMR but not all antiparallel spins are aligned in
direction of applied field even at saturation field.
Why this happens is not yet clear.

Magnetic coefficients and susceptibilities in Ta-
ble 1 and Table 2 are alternative indicators of how
quickly a material is magnetized. The attention was
focused on the susceptibility because of the role of
itinerant electrons in GMR. Table 2 shows clearly
that susceptibility is dependent on thickness and
pressure. Now, a major property of metallic struc-
tures is the antiferromagnetic exchange coupling
(AF). This coupling affects the saturation field and
decays with increasing thickness of nonmagnetic
layer in metallic superlattices. Thus, it can be seen
that in Co(2 nm)/Cu(t)|300, where the coupling
is reduced for tCu = 3.2 nm, the susceptibility
is higher. Interestingly, in Co(10 Å)/Cu(10 Å)|15
with the Cu thickness equivalent to 1 nm as in
Co(2 nm)/Cu(t)|300, where AF coupling is expect-
edly high, the susceptibility is anticipated to be
invariant with pressure. However, the noticeable
difference between its value at 2 GPa and 0 GPa
(ambient pressure) suggests that external pressure
can suppress AF coupling. Since nonmagnetic
layer modulates AF coupling, using the one-band
model [16] in which the coupling is dependent on
nonmagnetic layer thickness, the effect of pressure
is attributed to shrinking of the thickness with
increasing pressure. However, suppression of AF
coupling may not necessarily lead to enhanced
GMR at elevated pressure because of differing ef-
fects that can result from modification of interface
roughness. An increase in roughness enhanced
GMR in DC-magnetron sputtered Fe/Cr [17]
but suppressed GMR in molecular beam epitaxy
Fe/Cr were observed [18]. The involved structure
in the present case has lower GMR (50.5 %) at
2 GPa than at ambient pressure (54.0 %) [13],
showing that the principle mechanism is in-
terface scattering. Therefore, though elevated
pressure reduced AF coupling leading to higher
susceptibility, the attendant flattening of interface
roughness caused lowering of GMR. It should
be emphasized that a different behavior may be
obtained in a structure, where interface roughness
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suppresses GMR. Quantitative description
of the AF coupling-pressure relation re-
quires detailed experimental measurements
and modification of the one-band model [16]
in terms of pressure, especially the as-
pect of dependence of the thermodynamic
potential of holes on the layer thickness. More-
over, in case of Co/Ag/NiFe/Ag, where no
changes in external conditions occur (pressure,
thickness), the susceptibility is essentially in-
variant in the geometry of measurement. When
this is compared with Co(2 nm)/Cu(t)|300 and
Co(10 Å)/Cu(10 Å)|15 without accounting for
AF coupling, it can be seen that the magnitude
of susceptibility is dependent on the quality of
interface, because the external conditions alter the
roughness. Thus, besides its association with AF
coupling, susceptibility is a qualitative measure of
roughness. In the Co/Cu structures studied here,
high values correspond to smoother interfaces and
lower magnetoresistance in ion beam sputtered
Co/Cu but higher magnetoresistance in elec-
trodeposited Co/Cu, hence, interface roughness
scattering suppresses GMR in the former but
enhances it in the latter. In general, the suscepti-
bility is dependent on AF coupling and interface
roughness.

4. Conclusion
The model gives a good interpretation of mag-

netoresistance variation with magnetic field and al-
lows deducing material properties from observed
values. For theoretical study, it can be used in con-
junction with any resistivity model to arrive at the
material properties presented herein. However, the
obtained results may differ, especially the Fermi
vector, because of the choice of effective electron
mass. To the best of our knowledge at time of this

work, there have been no reported measured values
of the parameters collected in Table 2. The values
are open to experimental investigations and may
differ since our evaluations used the free electron
approximation.
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