Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

Open access


The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

[1] Colvin V.L., Schlamp M.C., Alivisatos A.P., Nature, 370 (1994), 354.

[2] Rauf S., Glidle A., Cooper J.M., Langmuir, 26 (2010), 16934.

[3] Huynh W.U., Dittmer J.J., Alivisatos A.P., Science, 295 (2002), 2425.

[4] Song J.G., Song X., Ling T., Du X.W., Qiao S.Z., Ind. Eng. Chem. Res., 51 (2012), 10074.

[5] Sun Q.J., Wang Y.A., Li L.S., Wang D.Y., Zhu Y., Xu J., Yang C.H., Li Y.F., Nat. Photo, 1 (2007), 717.

[6] Coe S., Woo W.K., Bawendi M.G., Bulovic V., Nature, 420 (2002), 800.

[7] Peng X.G., Schlamp M.C., Kadavanich A.V., Alivisatos A.P., J. Am. Chem. Soc., 119 (1997), 7019.

[8] Hines M.A., Guyot-Sionnest P., J. Phys. Chem. B, 100 (1996), 468.

[9] Zhao J.L., Bardecker J.A., Munro A.M., Liu M.S., Niu Y.H., Ding I.K., Luo J.D., Chen B.Q., Jen A.K.Y., Ginger D.S., Nano. Lett., 6 (2006), 463.

[10] Landes C.F., Braun M., El-Sayed M.A., J. Phys. Chem. B, 105 (2001), 10554.

[11] Xie R.G., Kolb U., Li J.X., Basche T. Mews A., J. Am. Chem. Soc., 127 (2005), 7480.

[12] Bebelaar D., Rev. Sci. Instrum., 57 (1986), 1116.

[13] Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., Bawendi M.G., J. Phys. Chem. B, 101 (1997), 9463.

[14] Califano M., Franceschetti A., Zunger A., Nano Lett., 5 (2005), 2360.

[15] Müller J., Lupton J.M., Rogach A.L., Feldmann J. Talapin D.V., Weller H., Phys. Rev. Lett., 93 (2004), 167402.

[16] Hagfeldt A., Gratzel M., Chem. Rev., 95 (1995), 49.

[17] Sykora M., Petruska M.A., Alstrum-Acevedo J., Bazel I., Meyer T.J., Klimov V.I., J. Am. Chem. Soc., 128 (2006), 9984.

Journal Information

IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794

CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 869 869 235
PDF Downloads 1066 1066 281