Graphene synthesis: a Review

Open access

Abstract

Graphene has achieved a great amount of popularity and interest from the science world because of its extraordinary physical, mechanical and thermal properties. Graphene is an allotrope of carbon, having one-atom-thick planar sheets of sp2 bonded carbon atoms densely packed in a honeycomb crystal lattice. Many methods to synthesize graphene have been developed over a short period and we believe it is necessary to create a list of the most notable approaches. This article focuses on the methods to synthesize graphene in an attempt to summarize and document advancements in the synthesis of graphene research and future prospects.

[1] GEIM A.K., NOVOSELOV K.S., Nat Mater., 6 (2007), 183.

[2] ALLEN M.J., TUNG V.C., KANER R.B., Chem. Rev., 110 (2009), 132.

[3] ENOKI T., SUZUKI M., ENDO M., Graphite Intercalation Compounds and Applications, Oxford University Press, New York, 2003.

[4] DELHAES P., Graphite and precursors, CRC Press, Amsterdam, 2001.

[5] BOEHM H.P., SETTON R., STUMPP E., Pure. Appl.Chem., 66 (1994), 1893.

[6] CASTILLO-MARTINEZ E., CARRETERO-GONZALEZ J., SOVICH J., LIMA M.D., J. Mater. Chem. A, 2 (2014), 221.

[7] PAULING L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell University Press, Ithaca (NY), 1960.

[8] GEIM A.K., Science, 324 (2009), 1530.

[9] KOTOV N.A., Nature, 442 (2006), 254.

[10] RAO C., BISWAS K., SUBRAHMANYAM K., GOVINDARAJ A., J. Mater. Chem., 19 (2009), 2457.

[11] SOLDANO C., MAHMOOD A., DUJARDIN E., Carbon, 48 (2010), 2127.

[12] KRISHNAMOORTHY K., KIM G.-S., KIM S.J., Ultrason. Sonochem., 20 (2013), 644.

[13] EDWARDS R.S., COLEMAN K.S., Nanoscale, 5 (2013) 38.

[14] WARNER J.H., SCHÄ FFEL F., BACHMATIUK A., RÜMMELI M.H., Graphene: Fundamentals and emergent applications, Elsevier, Oxford, 2012.

[15] NOVOSELOV K.S., GEIM A.K., MOROZOV S., JIANG D., ZHANG Y., DUBONOS S., Science, 306 (2004), 666.

[16] DATO A., RADMILOVIC V., LEE Z., PHILLIPS J., FRENKLACH M., Nano Lett., 8 (2008), 2012.

[17] REINA A., JIA X., HO J., NEZICH D., SON H., BULOVIC V., Nano Lett., 9 (2008), 30.

[18] VERDEJO R., BERNAL M.M., ROMASANTA L.J., LOPEZ-MANCHADO M.A., J. Mater. Chem., 21 (2011), 3301.

[19] PARK S., RUOFF R.S., Nat. Nanotechnol., 4 (2009), 217.

[20] SEGAL M., Nat. Nanotechnol., 4 (2009), 612.

[21] GEIM A.K., MACDONALD A.H., Phys. Today, 60 (8) (2007), 35.

[22] SHENDEROVA O., ZHIRNOV V., BRENNER D., Crit. Rev. Solid State, 27 (2002), 227.

[23] SAKAMOTO J., HEIJST VAN J., LUKIN O., SCHLÜTER A.D., Angew. Chem. Int. Edit., 48 (2009), 1030.

[24] MEYER J.C., GEIM A.K., Nature, 446 (2007), 60.

[25] MITTAL G., DHAND V., RHEE K.Y., PARK S.-J., LEE W.R., J. Ind. Eng. Chem., 21 (2015), 11.

[26] NOVOSELOV K., JIANG D., SCHEDIN F., BOOTH T., KHOTKEVICH V., MOROZOV S., P. Natl. Acad. Sci. USA, 102 (2005), 10451.

[27] JAYASENA B., SUBBIAH S., Nanoscale Res Lett., 6 (2011), 95.

[28] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., Nat. Mater., 13 (2014), 624.

[29] MCALLISTER M.J., LI J.-L., ADAMSON D.H., SCHNIEPP H.C., ABDALA A.A., LIU J., Chem.Mater., 19 (2007), 4396.

[30] ZHANG Y., LI D., TAN X., ZHANG B., RUAN X., LIU H., Carbon, 54 (2013), 143.

[31] ZHAN D., SUN L., NI Z.H., LIU L., FAN X.F., WANG Y., Adv. Funct. Mater., 20 (2010), 3504.

[32] LEE H., KANG J., CHO M.S., CHOI J.-B., LEE Y., J. Mater. Chem., 21 (2011), 18215.

[33] BRUMFIEL G., Nature, 10 (2009), 1038.

[34] JIAO L., ZHANG L., WANG X., DIANKOV G., DAI H., Nature, 458 (2009), 877.

[35] KOSYNKIN D.V., HIGGINBOTHAM A.L., SINITSKII A., LOMEDA J.R., DIMIEV A., PRICE B.K., Nature, 458 (2009), 872.

[36] CHEN J., CHEN L., ZHANG Z., LI J., WANG L., JIANG W., Carbon, 50 (2012), 1934.

[37] CHOUCAIR M., THORDARSON P., STRIDE J.A., Nat.Nanotechnol., 4 (2008), 30.

[38] BISWAL M., BANERJEE A., DEO M., OGALE S., Energ.Environ Sci., 6 (2013), 1249.

[39] CHEN G., WU D., WENG W., WU C., Carbon, 41 (2003), 619.

[40] RAMANATHAN T., STANKOVICH S., DIKIN D., LIU H., SHEN H., NGUYEN S., J. Polym. Sci. Pol. Phys., 45 (2007), 2097.

[41] DREYER D.R., PARK S., BIELAWSKI C.W., RUOFF R.S., Chem. Soc. Rev., 39 (2010), 228.

[42] ESWARAIAH V., ARAVIND S.S.J., RAMAPRABHU S., J. Mater. Chem., 21 (2011), 6800.

[43] DIKIN D.A., STANKOVICH S., ZIMNEY E.J., PINER R.D., Nature, 448 (2007), 457.

[44] NAIR R., WU H., JAYARAM P., GRIGORIEVA I., GEIM A., Science, 335 (2012), 442.

[45] SHEN B., LU D.D., ZHAI W.T., ZHENG W.G., J.MATER. CHEM. C, 1 (2013), 50.

[46] GURUNATHAN S., HAN J.W., EPPAKAYALA V., KIM J.-H., Int. J. Nanomed., 8 (2013), 1015.

[47] PARVEZ K., LI R., PUNIREDD S.R., HERNANDEZ Y., HINKEL F., WANG S., ACS Nano, 7 (2013), 3598.

[48] LU J., YANG J.-X., WANG J., LIM A., WANG S., LOH K.P., ACS Nano, 3 (2009), 2367.

[49] HERNANDEZ Y., NICOLOSI V., LOTYA M., BLIGHE F.M., SUN Z., DE S., Nat. Nanotechnol., 3 (2008), 563.

[50] ALZARI V., NUVOLI D., SCOGNAMILLO S., PICCININI M., GIOFFREDI E., MALUCELLI G., J. Mater. Chem., 21 (2011), 8727.

[51] NUVOLI D., VALENTINI L., ALZARI V., SCOGNAMILLO S., BON S.B., PICCININI M., J. Mater. Chem., 21 (2011), 3428.

[52] ZHOU M., TIAN T., LI X.F., SUN X.D., ZHANG J., CUI P., Int. J. Electrochem. Sc., 9 (2014), 810.

[53] LOTYA M., HERNANDEZ Y., KING P.J., SMITH R.J., NICOLOSI V., KARLSSON L.S., J. Am. Chem. Soc., 131 (2009), 3611.

[54] LIU L., ZHAI J., ZHU C., GAO Y., WANG Y., HAN Y., Biosens. Bioelectron., 63 (2015), 483.

[55] XU Y., BAI H., LU G., LI C., SHI G., J. Am. Chem. Soc., 130 (2008), 5856.

[56] HAO R., QIAN W., ZHANG L., HOU Y., Chem. Commun., 48 (2008), 6576.

[57] PATIL A.J., VICKERY J.L., SCOTT T.B., MANN S., Adv. Mater., 21 (2009), 3159.

[58] ENGLERT J.M., RÖHRL J., SCHMIDT C.D., GRAUPNER R., HUNDHAUSEN M., HAUKE F., Adv. Mater., 21 (2009), 4265.

[59] SU Q., PANG S., ALIJANI V., LI C., FENG X., MÜLLEN K., Adv. Mater., 21 (2009), 3191.

[60] WOLTORNIST S.J., OYER A.J., CARRILLO J.-M.Y., DOBRYNIN A.V., ADAMSON D.H., ACS Nano, 7 (2013), 7062.

[61] DENG C., HU H., GE X., HAN C., ZHAO D., SHAO G., Ultrasonics., 18 (2011), 932.

[62] PINJARI D.V., PANDIT A.B., Ultrasonics., 18 (2011), 1118.

[63] SAFARIFARD V., MORSALI A., Ultrasonics., 19 (2012), 823.

[64] RAMADOSS A., KIM S.J., J. Alloy. Compd., 544 (2012), 115.

[65] LEE J.K., LEE K., LEE K.I., GAP L.J., IL L.G., Ball-milled graphene nano-powder or ribbon purifying method, involves separating magnetic impurities during stirring suspension using magnet, where impurities are incorporated into graphene powder during ball-milling, Korea Institute of Science and Technology, Seoul, p. 7.

[66] LEON V., QUINTANA M., HERRERO M.A., FIERRO J.L.G., HOZ DE LA A., PRATO M., Chem. Commun., 47 (2011), 10936.

[67] LIN T., TANG Y., WANG Y., BI H., LIU Z., HUANG F., Energ. Environ Sci., 6 (2013), 1283.

[68] BORAH M., DAHIYA M., SHARMA S., MATHUR R.B., DHAKATE S.R., Mater. Focus, 3 (2014), 300.

[69] LIU L., XIONG Z., HU D., WU G., CHEN P., Chem. Commun., 49 (2013), 7890.

[70] PAN D., WANG S., ZHAO B., WU M., ZHANG H., WANG Y., Chem. Mater., 21 (2009), 3136.

[71] EL-KADY M.F., STRONG V., DUBIN S., KANER R.B., Science, 335 (2012), 1326.

[72] MILLER J.R., Science, 335 (2012), 1312.

[73] COTE L.J., CRUZ-SILVA R., HUANG J., J. Am. Chem. Soc., 131 (2009), 11027.

[74] GAO E., WANG W., SHANG M., XU J., Phys. Chem. Chem. Phys., 13 (2011), 2887.

[75] ABDELSAYED V., MOUSSA S., HASSAN H.M., ALURI H.S., COLLINSON M.M., EL-SHALL M.S., J. Phys. Chem. Lett., 1 (2010), 2804.

[76] HUANG L., LIU Y., JI L.-C., XIE Y.-Q., WANG T., SHI W.-Z., Carbon, 49 (2011), 2431.

[77] CHICHKOV B., MOMMA C., NOLTE S., ALVENSLEBEN VON F., TÜNNERMANN A., Appl. Phys. A, 63 (1996), 109.

[78] SOKOLOV D.A., SHEPPERD K.R., ORLANDO T.M., J. Phys. Chem. Lett., 1 (2010), 2633.

[79] TRUSOVAS R., RATAUTAS K., RAČIUKAITIS G., BARKAUSKAS J., STANKEVIČIENĖ I., NIAURA G., Carbon, 52 (2013), 574.

[80] ZHOU Y., BAO Q., VARGHESE B., TANG L.A.L., TAN C.K., SOW C.H., Adv. Mater., 22 (2010), 67.

[81] AMINI S., GARAY J., LIU G., BALANDIN A.A., ABBASCHIAN R., J. Appl. Phys., 108 (2010), 094321.

[82] SUTTER P.W., FLEGE J.-I., SUTTER E.A., Nat. Mater., 7 (2008), 406.

[83] PLETIKOSIĆ I., KRALJ M., PERVAN P., BRAKO R., CORAUX J., N’DIAYE A., Phys. Rev. Lett., 102 (2009), 056808.

[84] WEATHERUP R.S., BAYER B.C., BLUME R., DUCATI C., BAEHTZ C., SCHLÖGL R., Nano Lett., 11 (2011), 4154.

[85] KIM K.S., ZHAO Y., JANG H., LEE S.Y., KIM J.M., KIM K.S., Nature, 457 (2009), 706.

[86] ZHANG Y., ZHANG L., ZHOU C., Accounts Chem. Res., 46 (2013), 2329.

[87] BAE S., KIM H., LEE Y., XU X., PARK J.-S., ZHENG Y., Nat. Nanotechnol., 574 (2010), 574.

[88] RAFIEE J., MI X., GULLAPALLI H., THOMAS A.V., YAVARI F., SHI Y., Nat. Mater., 11 (2012), 217.

[89] LENSKI D.R., FUHRER M.S., J. Appl. Phys., 110 (2011), 013720.

[90] LI X., CAI W., AN J., KIM S., NAH J., YANG D., Science, 324 (2009), 1312.

[91] LEVENDORF M.P., RUIZ-VARGAS C.S., GARG S., PARK J., Nano Lett., 9 (2009), 4479.

[92] WASSEI J.K., MECKLENBURG M., TORRES J.A., FOWLER J.D., REGAN B., KANER R.B., Small, 8 (2012), 1415.

[93] SUTTER P., Nat. Mater. 8 (2009), 171.

[94] OHTA T., BOSTWICK A., MCCHESNEY J., SEYLLER T., HORN K., ROTENBERG E., Phys. Rev. Lett., 98 (2007), 206802.

[95] MOROZOV S., NOVOSELOV K., KATSNELSON M., SCHEDIN F., PONOMARENKO L., JIANG D., Phys.Rev. Lett., 97 (2006), 016801.

[96] JOBST J., WALDMANN D., SPECK F., HIRNER R., MAUDE D.K., SEYLLER T., http://arxiv.org/abs/0908.1900,2009.

[97] SHEN T., GU J., XU M., WU Y., BOLEN M., CAPANO M., Appl. Phys. Lett., 95 (2009), 172105.

[98] WU X., HU Y., RUAN M., MADIOMANANA N.K., HANKINSON J., SPRINKLE M., Appl. Phys. Lett., 95 (2009), 223108.

[99] ALEXANDER-WEBBER J., BAKER A., JANSSEN T., TZALENCHUK A., LARA-AVILA S., KUBATKIN S., Phys. Rev. Lett., 111 (2013), 096601.

[100] TZALENCHUK A., LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄ JÄRVI M., YAKIMOVA R., Nat. Nanotechnol., 5 (2010), 186.

[101] LARA-AVILA S., KALABOUKHOV A., PAOLILLO S., SYVÄJÄRVI M., YAKIMOVA R., FAL’KO V., arXiv:09091193, 2009.

[102] HASS J., VARCHON F., MILLAN-OTOYA J.-E., SPRINKLE M., SHARMA N., HEER DE W.A., Phys.Rev. Lett., 100 (2008), 125504.

[103] LIN Y.-M., DIMITRAKOPOULOS C., JENKINS K.A., FARMER D.B., CHIU H.-Y., GRILL A., Science, 327 (2010), 662.

[104] CHAKRABARTI A., LU J., SKRABUTENAS J.C., XU T., XIAO Z., MAGUIRE J.A., J. Mater. Chem., 21 (2011), 9491.

[105] BLAKE P., BRIMICOMBE P.D., NAIR R.R., BOOTH T.J., JIANG D., SCHEDIN F., Nano Lett., 8 (2008), 1704.

[106] EDA G., FANCHINI G., CHHOWALLA M., Nat. Nanotechnol., 3 (2008), 270.

[107] LI D., MÜLLER M.B., GILJE S., KANER R.B., WALLACE G.G., Nat. Nanotechnol., 3 (2008), 101.

[108] RAHAMAN M., ISMAIL A.F., MUSTAFA A., Polym.Degrad. Stabil., 92 (2007), 1421.

[109] KO Y.U., CHO S.-R., CHOI K.S., PARK Y., KIM S.T., KIM N.H., J. Mater. Chem., 22 (2012), 3606.

[110] YAMAGUCHI H., EDA G., MATTEVI C., KIM H., CHHOWALLA M., ACS Nano., 4 (2010), 524.

[111] NIKOLAEV P., BRONIKOWSKI M.J., BRADLEY R.K., ROHMUND F., COLBERT D.T., SMITH K., Chem. Phys. Lett., 313 (1999), 91.

[112] LIANG F., SADANA A.K., PEERA A., CHATTOPADHYAY J., GU Z., HAUGE R.H., Nano Lett., 4 (2004), 1257.

[113] YAN Z., PENG Z., CASILLAS G., LIN J., XIANG C., ZHOU H., ACS Nano, 8 (2014), 5061.

[114] IRISSOU E., LEGOUX J.-G., RYABININ A., JODOIN B., MOREAU C., J. Therm. Spray Techn., 17 (2008), 495.

[115] WANG X., ZHI L., MÜLLEN K., Nano Lett. 8 (2008), 323.

[116] LIANG X., CHANG A.S.P., ZHANG Y., HARTENECK B.D., CHOO H., OLYNICK D.L., CABRINI S., Nano Lett., 9 (1) (2009), 467.

[117] STANKOVICH S., DIKIN D.A., PINER R.D., KOHLHAAS K.A., KLEINHAMMES A., JIA Y., WU Y., NGUYEN S.T., RUOFF R.S., Carbon, 45 (7) (2007), 1558.

[118] WATCHAROTONE S., DIKIN D.A., STANKOVICH S., PINER R., JUNG I., DOMMETT G.H.B., EVMENENKO G., WU S.-E., CHEN S.-F., LIU CH.,-P., NGUEN S.T., RUOFF R.S., Nano Lett., 7 (7) (2007), 1888.

[119] LI Z., WANG J., LIU X., LIU S., OU J., YANG S.,, J.Mater. Chem., 21 (2011), 3397.

[120] GOMEZ-NAVARRO C., WEITZ R.T., BITTNER A.M., SCOLARI M., MEWS A., BURGHARD M., KERN N., Nano Lett., 7 (11) (2007), 3499.

[121] SHEN H., China’s Graphene industry set to skyrocket in 2014, http://investorintel.com/graphite-grapheneintel/chinas-graphene-industry-starts-take-2014/, 2014.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 638 630 70
PDF Downloads 373 369 59