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Two-extremum electrostatic potential of metal-lattice plasma
and the work function of an electron
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Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron
density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined
in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the
lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders.
The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron
work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields
10.44 eV for the Fermi energy of free electron gas; −5.817 eV for the Fermi energy level; 4.509 eV for the average work
function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies ∼ 10E16 per s of
the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface
plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute
to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of
nanostructures.
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1. Introduction

In metals theory based on valence electrons,
different pseudopotential approximations are em-
ployed to compensate the ion core Coulomb poten-
tial [1–6]. One of such approaches together with
density-functional theory [7] based approximations
and perturbation methods, for treating the electron
interactions in different states of matter and ele-
ments, is the pseudopotential plane wave method,
apart from other or mixed methods. For solutions
of bio-molecular structures, Tavares and Prausnitz
have performed comparative calculations of phase
diagrams [8] by employing the Barker-Henderson
second-order perturbation theory. There are also
phenomenological approaches to the electron work
function (WF) which is one of the most important
characteristics of materials. In order to ensure a
wide area of applicability to metals and alloys, such
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approaches use the classical electrostatic image or
the unscreened Coulomb potential [9–15].

Brodie, not employing an ab initio method, has
calculated the WF of the polycrystalline surface
in terms of the conducting-sphere radius and the
Fermi energy, obtained a good agreement with ex-
perimental data for several fcc and bcc metals [10],
and has recently generalized his model of WF [11].
Using Brodie’s concept as the starting point, Halas
and Durakiewicz (H-D) have combined the polar-
ization length of metal-lattice plasma (MLP) with
the Fermi energy to calculate the polycrystalline
WF of sixty elements [12]. Their new model [13],
using the free-electron gas and classical electro-
dynamics approach, leads to a good agreement
with WF experimental data concerning metals, rare
earth elements as well as alloys and yields the
most reliable data despite its phenomenological
character [9].

Such results of the H-D approach were motiva-
tion for the present attempt at the electron screened
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potential and WF problems. For constructing our
pseudopotential ΨES(x) and a simple formula of
average WF proposed, the plasma polarization con-
cept has been developed and two intensive param-
eters of the 2D plasma included. Since the 3D
metal inside exhibits isotropic electronic proper-
ties, while its 2D surface skin of 2 or 3 atomic lay-
ers and the WF display clearly anisotropic ones,
we treat a crystal of metal (Me) as a thermody-
namic two-phase two-component system of free
electrons and lattice ions. The characteristic length
ds(hkl) which determines the phase boundary posi-
tion between the Me surface and the bulk, was de-
termined [16] in terms of the crystalline (atomic)
lattice. The novel potential ΨES with its two ex-
tremes has the form similar to theoretical pseu-
dopotentials, such as the Tavares-Prausnitz double
minimum potential [8, 17].

2. Base for the calculations
2.1. Formalism

Formulae are given in the system of units
CGS ESU; the unitary vacuum permittivity ε0
is omitted. The units 1Å (= 1 × 10−10 m),
1 eV (≈ 1.602 × 10−19 J) and 1 D (debye ≈
3.3356 × 10−30 C·m) are also used in this paper.
Physical and chemical potentials and potential en-
ergies refer to an electron with zero chosen at infin-
ity in the vacuum. Calculations are made for tung-
sten with its intensive parameter of MLP the chem-
ical potential found by employing the linear regres-
sion method for the hard-sphere system [16].

The metal bulk is defined in the first near-
est neighbour approximation employing the broken
bonds model [18]. The interior of the crystal has the
zero total number of atoms with broken u-bonds,
i.e. where the surface dipole layer (double layer) of
electrostatic charge (DL) is absent, which occurs
for x 6 −ds(hkl). This is illustrated in Fig. 4 of
Appendix. The ideal half-crystal’s surface of metal
is unbounded in its two tangential dimensions, but
is bounded in the normal direction by two infinite
planes with the characteristic length ds in between.
For the definition of ds(hkl) (Appendix). It should
be noted that the phase boundary position ds(hkl) is

independent of Miller indices parity.

Metal’s average surface (MS) skin was defined
for a conventional polycrystal [16]. For bcc met-
als, the MS of a metal can best be illustrated with
the (111) plane as shown in Fig. 4. The term
‘physical surface’ refers to the conventional sur-
face which is composed of nondegenerate or ther-
malized electrons – the ”electron cloud” of Smolu-
chowski’s [19]. The origin of the coordinate sys-
tem is placed on the geometrical surface, or the
first lattice plane with x > 0 on the side of the
vacuum. The x′ coordinate (equal to x − x0) are
the distances measured from half the primary (ex-
ternal) electron-image plane position. The origin
shift x0 is taken equal to polarization length of
MLP. To compute this length we utilize the Debye-
Hueckel screening radius L of classical plasma
physics [20], which corresponds to the screening
length of Thomas-Fermi approximation. Both these
characteristic lengths, ds and L, are attributed to
the infinite two-dimensional, anisothermal metal-
lattice plasma [21–23], which can locally be ther-
malized and polarized, as its two linear dimensions.

2.2. Polarized metal-lattice plasma

An electrically neutral semi-infinite crystal of
Me is treated in the following as a two-phase ther-
modynamic system of the isotropic bonded bulk
Me (BM) phase with delocalized valence electrons
and the Me surface phase composed of 2 or 3 lay-
ers of atoms with directional bonds within the sur-
face skin. The high-density low temperature MLP
constitutes a two-component system of electrons
and lattice ion cores (i.e. the conventional positive
ions) in the above two phases. Such a neutral two-
component two-phase system of free electrons and
ion cores has two degrees of freedom. In view of
the Gibbs phase rule, the two degrees of freedom
of MLP permit the free electron number density n
and the bulk chemical potential µ to be treated as
two intensive parameters which are a function of
position and independent of the system’s size.

Plasma of lattice ions and free electrons is
anisothermal in the BM phase, where the Fermi-
Dirac distribution is valid. It may, however, be
thermalized within some locally adiabatic regions
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of MS phase. In the local thermal equilibrium
(Ti ≈ Te), polarization of the surface phase occurs
and the dipole barrier exists. The resulting face-
dependent variation in intrinsic field strength at the
surface is considerable and accounts for the work
function anisotropy. The MS phase is treated as a
self-excited resonance system which is associated
with the intrinsic fields. To characterize the locally
polarized plasma, essential are its local electron
density parameter nx (associated with the linear di-
mensions of the MLP space) and the local Fermi
energy of the metal.

For both sides of the Me/Vacuum interface, we
assume the MLP to have the dielectric constant or
pseudo-permittivity in the range 0 < ε 6 1. This
corresponds to typical MLP densities of 0.2 to 5.2
× 1023 cm−3. Then, like the case of gas discharge
plasmas, enhancement of local electric field occurs
rather than the dielectric-type reduction [24]. The
above accounts for the normal translational kinetic
energy, mv2

x/2, of electrons and also for the energy
of simple harmonic oscillations of MLP owing to
possible lateral small displacements of surface ions
and electrons occurring on metastable sites in yz-
plane. The traditional picture below needs the as-
sumption of treating the MLP as a quasi-elastic
medium.

Let a local MLP density in a stable thermal
equilibrium be equal to nx and the changes in den-
sity very small around the equilibrium position.
Then an electron may behave as a natural, small al-
amplitude oscillator. The lateral electric restoring
force qFl of −4πnxe2al may appear at every grav-
ity x-centre of oscillating charges, and the energy
of harmonic oscillation is:

Et =
mω2

pa2
l

2
(1)

with the function ωp(nx) being the plasma reso-
nance angular frequency given by:

ω
2
p =

4πnxe2

m
(2)

where m is the electron mass and e is the elemen-
tary charge. Then the energy Et is expressed as:

2πnxe2a2
l (3)

Note, the electron mass does not enter the final
formula of harmonic oscillation energy.

In such a case, the total energy per electron of
the 2D plasma in the Me/Vacuum interface can be
expressed in the Cartesian coordinate system as:

E = Ū (x)+
mv2

x

2
+πnxe2a2

l (4)

The terms on the right-hand side of equation
represent average values of the potential energy, the
translational kinetic energy, and the energy Ẽt of
harmonic small oscillation, respectively.

3. The MLP electron density pa-
rameter

The H-D spontaneous polarization length [12]
may be identified with the linear dimension of the
2D MLP or the Thomas-Fermi screening length. In
contrast to the H-D procedure, to calculate the po-
larization length we use the local electron density
ns that is related to the MS phase rather than the
free electron average density ñ. We assume that the
MLP linear dimension is concerning the case of lo-
cally thermalized plasma (Te ≈ Ti). Consequently,
for the Fermi energy, we will put the local Fermi
energy Ekx of the MS phase into the relation for
the Debye-Hueckel screening length L of classical
plasma:

L =

[
kTi

4πne2(1+ Ti
Te
)

]1/2

=

[
Ekx

8πne2

]1/2

(5)

Density n will be replaced with the local density
ns which is (hkl)-dependent and defined in terms of
the face dependent distorted radius Rd of an MS
“polarized” atom. We assume that the surface ion
becomes practically screened above a distance of
twice the Thomas-Fermi screening radius 1/ks, or
from about 2L to xs.

The local Fermi kinetic energy EF,s of an elec-
tron, like other respective Fermi energies, is simply
obtained from the classical Sommerfeld relation for
the kinetic energy of free electron gas:

EF,s =
1
2

h̄2m−1(3π
2ns)

2/3 (6)
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In order to calculate the density ns, the MLP lin-
ear dimension ds will be used. First, it is proper to
take into account the size of surface atoms. Using a
conventional diameter (2Ra−2lh) of an MS positive
“ion” we drive at a relation for a surface polarized
atom:

7Rd(MS) = ds(MS)−Ra + lh(MS) ≈ Ra +1/2 l(MS)
(7)

where lh is the dipole half-length of DL, and Ra is
the atomic (metallic) radius. The (hkl)-dependent
dipole length, l(hkl), of the DL moment p is a
semiempirical factor associated with the MS:

lMS =
Bds(MS)

2πe2 (8)

where B is a constant numerically equal to the slope
of the linear regression [16]; henceforth, we omit
subscript MS. The radius Rd is related to the aver-
age MS electron density by:

1
ns

= S0Rd (9)

where S0 is the area of a 2D primitive unit cell of
the MS (Appendix). Let the product S0l be asso-
ciated with the unit volume of the locally polar-
ized 2D plasma, and denoted v0. The sphere radius
r0 corresponding to the v0 approximately equals
3/2 a.u. (bohr) and is comparable with typical De-
bye lengths of 0.5 to 1.0 Å. The related unit density,
v−1

0 , is denoted n0.
For an electrically neutral metal, the MLP elec-

trons are leaking out of the surface into the vacuum
to condense and create the physical surface. The
ideal physical surface is located about the plane
of equilibrium between attraction and repulsion
forces. It is distant from the geometrical surface by:

xs = Rd + x0 (10)

True position of the physical surface is diffuse
by ± x0 (Fig. 1). Distorted spherical symmetry of
MS-phase atoms (and Wigner-Seitz cells at the sur-
face) is reflected by the radius Rd. In the hard-
sphere approximation, this surface phase parame-
ter determines the equilibrium position (xs ± x0) of

the physical surface and can be treated as invariant
with respect to the attraction potentials [25, 26].

Intensive parameter the average density of free
electrons, ñ, is defined as the inverse of the volume
per atom of Me, reduced by the conventional vol-
ume of an MLP ion itself, i.e. using the van der
Waals-type correction:

1
ñ
= Ω− 4

3
(Ra− lh)3 (11)

where Ω is the volume per atom of the crystal.
Density n+ is associated with some surface ions

of the charge +1. It is the primary positive compo-
nent of MLP density which, in a series with multi-
ply charged ions, is introduced to satisfy the charge
neutrality condition:

1
n+

= S0ds (12)

The electric neutrality condition for the total
concentration n of electrons can be expressed as:

n = ∑zin+i (13)

where i = zi = 1,2,3,. . . , m and the first term n+ is
assumed equal to the concentration of atoms with
the average deficiency of one electron per atom,
the second term is related to the ones with a dou-
ble electron deficiency etc. up to a limiting defi-
ciency of zm electrons per atom of MS. A local,
or notional, deviation of the n(x) density from the
neutrality condition is manifested as plasma po-
larization. Characteristic lengths and magnitudes
of parameters of the key quantities, together with
some magnitudes of interest for surface science, are
given in Tables 1 and 2. The respective potentials,
Fermi energies obtained from equation 6, and other
data are collected in Tables 3 and 4.

4. Electron work function
The work function of an electron of crystal,

which is also called the effective WF and usually
denoted by the letter ϕ, is a fundamental physico-
chemical characteristic of metal and semiconductor
surfaces and interfaces. Different approaches to the
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Table 1. Magnitudes of characteristic lengths and quantities.

Quantity Tungsten W [unit] Remarks

MLP pseudo-permittivity ε 0.303 Cu: 0.413, Re: 0.311
MS primitive unit cell area S0 1.494 a2

MLP unit volume v0 1.92 Å3

effective dipole length l 0.1283 Å Cu: 0.13, Re: 0.10
MLP polarization length L 0.529 Cu: 0.503, Re: 0.553
Brodie critical distancea d 0.605 [10]
distorted radius Rd 1.431
phase boundary position ds 2.737 Cu: 2.685, Re: 2.95
outside/vacuum site xc 3.266
physical surface position xs 1.96 ± 0.529 rs = 3.7 ± 1.0
pseudopotential’s maximum xm 1.90
pseudopotential’s minimum xn 3.58
inflexion points A1 and A0 2.2; 5.3
metallic radius Ra 1.37 Cu: 1.28, Re: 1.37 [52]
lattice parameter a 3.165 Cu: 3.615, Re: 2.761 accepted

aIdentified [10] with the Heisenberg uncertainty distance δx related to the (2EFmeff)
1
2

momentum change to zero just after an electron’s emission.

Table 2. Magnitudes of parameters and quantities for the electron screened potential.

Quantity Tungsten W [unit] Remarks

MS positive charge density n+ 0.244 × 1023 cm−3

MS electron density ns 0.467 × 1023

free electrona average density ñ 1.533 × 1023 Cu: 2.7 × 1023, Re: 2.0 × 1023

local electronb density n(100) 4.010 × 1023

MS unit density n0 5.207 × 1023

limiting density n∗(Rd) 21.2 × 1023

limiting density n(rs = 1) 16 × 1023 [7] formula (86)
theoretical electron density n 3.8 × 1023 rs = 1.62 [27]
dipole polarizability α0 1.53 × 10−25 cm3

electron polarizability 3.52 × 10−25 estimated
W(110) atom polarizability α110 5.4 × 10−25 [53]
MLP local moment p0 0.616 D
DL moment magnitude p 0.187
W(110) adatom momenc p 0.2 [54]
intrinsic barrier field F −3.359 VÅ−1

lateral field component Fl 1.085
normal field component Dx 3.663 Cu: 6.78, Re: 3.3
virtual field component Fv 12.09 Cu: 16.4, Re: 10.6

aValue almost equal to that for the most packed plane W(110).
bSame value was used to model polarizability in the Hohenberg-Kohn theory of electron gas [7].
cMeasured for W/W(110) adatom surface-diffusion by FIM. (1D ≡ 1 debye = 10−18 ESU).
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work function problem were discussed in [27]. The
WF has been defined in the literature in different
ways [27–31], principally the following two ones.

• The WF of an electron of a metal was de-
fined [32, 33] as the difference in energy be-
tween a lattice with an equal number of ions
and electrons, and the lattice with the same
number of ions, but with one electron re-
moved from the highest energy state of the
neutral metal. It can be expressed by the for-
mula:

WF = e∆Φ(hkl)−µ (14)

where µ is the bulk chemical potential, and
e∆Φ(hkl) is the potential change responsi-
ble for the DL contribution to the WF. The
e∆Φ is face dependent, while the internal in-
tensive parameter µ is homogeneous, which
was proved by Smoluchowski [19]. Mag-
nitudes of the chemical potential µ were
found for several d transition metals based
on a great number of existing experimen-
tal WF values [16]; there was also the
effective WF change ∆ϕ(hkl) determined us-
ing the Helmholtz 2D-gas dipole formula.

• A thermodynamics based approach was that
by Herring and Nichols [34]. The WF of an
electron of a metal crystal was formulated
as the difference between the electrochem-
ical potential of metal electrons, taken per
electron, and the electrostatic potential en-
ergy of an electron at a point in vacuum just
outside the surface:

WF = eΨc− µ̃ (15)

where µ̃ is the electrochemical potential,
and Ψc(x) is the outer electrostatic (Volta)
potential 6 0. The electrochemical potential
µ̃ is defined using the notion of inner po-
tential Ψ of a phase in the electrochemical
system [35]. Consequently:

µ̃ = µ+Φv = µ0 +Φs (16)

where µ0 is the standard chemical potential
of an electron of metal at constant tempera-
ture; it is computed from the condition 16.

On the other hand:

WF =−eχs−µ0 (17)

where χs is the effective surface potential
change which is face dependent. For this
two-phase system, the ∆Φ represents the
difference in inner potential between the
phases MS and BM, Φv −Φs, across the
phase boundary situated at −ds. Value of
−eχs equals double the WF change ∆ϕ.

The inner potential Φs is also face depen-
dent; it is defined in terms of electrochem-
istry as the sum of the average outer po-
tential Ψc and the effective surface potential
change χs. The average bulk potential Φv is
computed from the expression −4πp0/∆S,
where ∆S is replaced with S0 and the mag-
nitude of the MLP local dipole moment p0
taken equal to the product el.

For a neutral MS (polycrystalline) metal
in the absence of applied field, the near-
surface level Ψc of the outer potential is
being calculated by realizing purely elec-
trostatic virtual works δW associated with
the infinitesimal drops in potential energy,
−δeΨx each. These works are executed by
infinitesimally slow bringing a massless test
particle of the elementary charge e, in a
quasi-static reversible process, from infin-
ity in the vacuum under action of the long
range image force down to the position xc
outside the Me surface. In such a reversible
process being a dense set of consecutive
equilibrium states, the closest surface atom
still retains its original screening; then the
dipole repulsion together with the electron
exchange/correlation (XC) effects may be
neglected. Thus, the image force is applica-
ble safely down to the point xc equal to or
higher than ds +x0. The outer potential level
Ψ(xc) is then calculated by integration:

Ψc = e−1Wx←∞ = e−1
∫ xc

∞

−e2

4(x− x0)
2 dx =−∆Ψ∞,x

(18)
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where Ψx=∞ = 0. This gives Ψc = −e/4ds.
For x < xc, however, the XC interactions
cannot be ignored.

The theoretical work function (WF∞) is
commonly identified with the energy needed
to remove an electron of a metal from the
Fermi level into the vacuum to a point at
infinity, i.e. taking a zero outer electrostatic
potential Ψc(x). The WF values experimen-
tally obtained are smaller.

• An approximate formula can be obtained for
the average WF via the following total en-
ergy consideration. In virtue of the energy
conservation law, upon removing an elec-
tron just outside the surface, the average
change in total energy of the system of in-
terest is zero:

∆E = ∆Ū +∆Ēk = 0 (19)

where the energy E is expressed by equa-
tion 4 and the differences are taken be-
tween the relevant energy levels. Assigning
the plus sign to the quantities related to the
transient activation, such as the mean energy
quantum h̃ν and the MLP excitation energy
Ẽl, while the minus sign to formal energy
losses for the thermodynamic system, we
have:

0 =−µ̃−EF(ñ)+ h̃ν + Ẽt (20)

and finally, taking h̃ν= WF, we get:

WF = µ̃ +EF(ñ)− Ẽt (21)

Such an estimated average electron WF is in
nice accord with the values of effective WF from
the literature. The minimum work function WFm is
then obtained as the sum of the least possible en-
ergy loss equal to −µ0 and the average energy gain
Ẽt, i.e. as Ẽt− µ0.

An average electron affinity, Aat, with respect
to a neutral surface atom of 1/2 Me2 can be esti-
mated in the same way. An incoming test electron
is to lose an energy of Aat in favour of the system.
Relevant equations are:

0 = µ0 +EF,s + Ẽt −Aat (22)

Aat = µ0 +EF,s + Ẽt =V1−V2 (23)

where V1− V2 = (A0+ A1)/2 − A2. The A0 is the
small-oscillation ground level corresponding to a
metastable surface state. The A0 and A1 levels, that
pass through the two inflection points shown in the
figures, reflect virtual bound states or the surface
states receptive to electron tunneling during emis-
sion. The difference ∆A, interpreted as the reso-
nance energy, is almost equal to the value of Ẽt (Ta-
bles 3 and 4).

5. The electron screened electro-
static potential ΨES

First, we should have estimated the dielectric
constant ε of the MS phase within the Me/Vacuum
interface. The vacuum dielectric constant equal to
unity is usually ascribed to metals. The force fx,
normal to the surface and acting on an electron be-
tween two infinite planes at a short distance slightly
higher than Rd from the geometrical plane, is ex-
pressed by the product −eDx. The normal compo-
nent Dx of the effective field displacement vector D
is ascribed to the local MLP polarization, and rep-
resents the effective field 4πσ̄ of the surface layer.
The corresponding average surface potential level
χs is equal to−4πσ̄l. The field strength component
Dx/ε represents the virtual intrinsic field Fv of the
magnitude 4πσ, and depicts the force acting along
the polarized plasma medium. The charge distri-
bution is discrete, and respective field components
vary over the DL region, like those of an electric
dipole’s field.

The pseudo-permittivity ε can be replaced with
the factor θ being a real number such that 0 <
θ 6 1. The continuous distribution of the surface
charge density σ̄ at the physical surface is approx-
imated by the average density ∆q/∆S. It can be ex-
pressed as the ratio ϑe/S0, where 0 < ϑ6 1. Then:

Dx =
4πθe

S0
(24)

where θ is a surface charge redistribution factor
defined as the ratio (ϑ−− ϑ+)/ϑmax with the ϑmax
equal to unity. The θ factor has been calculated us-
ing equations (3), (7) and (8) of paper [16]. The
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Table 3. Values of potentials of an electron.

Quantity Tungsten W [unit] Remarks

effective potential V0 (min) −0.53 V
pseudopotential ΨES (min) −0.554
surface potential change χs −0.470
outer potential level Ψc −1.315
MS inner potential Φs −1.785
bulk average potential Φv −1.551
MS chemical potential µ0 −4.032 eV
bulk chemicala potential µ −4.267 [16]
Fermi level µ̃ −5.817 Cu: 5.96, Re: 6.1

aThe isotropic term Al taken as the bulk chemical potential was determined with the accuracy
±0.1 eV rather than ±1 eV erroneously given in paper [16] (Fig. 1).

Table 4. Values of energies of an electron. energy Ẽt.

Quantity Tungsten W [unit] Remarks

resonance energy ∆A 0.117 eV
maximal oscillation energy Et 0.228 Cu: 0.1, Re: 0.2
Wigner-Seitz local energya −0.23 [33]
unit field energy (εF2

vv0/8π) 0.235
effective WF dipole term ∆ϕ 0.235 [16]
electron affinity Aat 0.811
electron affinity A 0.815 [52]
average WF 4.509 Cu: 4.62, Re: 4.89
minimum WFm 4.146
local Fermi energy EF,s 4.729 Cu: 5.78, Re: 3.97
free electron energy EF(ñ) 10.44 Cu: 15.23, Re: 12.47
LDA-calculated EF 10.46 [10]
unit kinetic energy Ek(n0) 23.60
theoretical barrier height 23.0 [55]
limiting kinetic energy Ek(n∗) 60.18

aEnergy fall at the surface Wigner-Seitz sphere with the zero of potential chosen to the surface.

ϑ− is an electron “coverage” ratio of πR2
a /sh which

determines the negative moment M− due to the ef-
fect of MLP internal ∆P pressure. The ϑ+ expresses
the total number of broken bonds per surface atom,
which determines the positive moment M+ due to
the surface relaxation effect. These effects corre-
spond to the Smoluchowski electron spreading and
smoothing effects.

Assuming the relation D = εF still valid we put
arbitrarily ε = θ, then the maximum virtual field

Fv component in the MS dipole approximation is
given by:

Fv =
4πθe
εS0

=
4πe
S0

(25)

Next, as is known from elementary electrostat-
ics, the electrostatic potential of a neutral system
of charges, as a function of point which is rela-
tively distant from the system, should include a
dipole repulsion term besides the image term of
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Fig. 1. “Double well” potential ΨES with its first and
second derivatives, and the outer and inner po-
tential levels marked. Small circles enclose in-
flexion points, potential join point at ∼1.4 Å is
enclosed by larger circle. Lines A show affinity
levels; chain line xs shows the position of ideal
physical surface.

Coulomb attraction. Hence, any effective potential
should include a dipole term ∝ p0x−2. Then, to in-
clude the XC effects, a virtual electron e is taken
as the test charge which can change its position x
from infinity in the vacuum closer and closer to
the Me/Vacuum interface, up to points just at the
very physical surface. The electron must “see” a
discrete surface of a few atomic layers (rather than
the continuous positive jellium) for obtaining the
potential energy with the XC effects included. Full
expression of the potential shall include the image
potential function of −e/x completed by addition
of the repulsion (dipole) potential type ∼x−2 and
the image terms of repulsion/attraction of the type
±α0/x4, where α0 is the dipole component of the
virtual polarizability α of a surface atom as the
electron is approaching it:

α = p0/Dx = ∝̃+α0 (26)

where α0 = θα, and ∝̃ is the expected MLP elec-
tron contribution to the polarizability. The image
charge (unscreened) potential of the Brodie and H-
D approaches to the WF has the degree of homo-
geneity −1 of the image force approximation. This
should apply to the present potential.

Finally, the effects of electron XC interactions
close to the surface are evaluated in a qualitative

way. The form of each XC term is based on the
early interpretation [36] of the Bohr orbit preces-
sion as due to the perturbing potential ∝ r−4. The
field from an external electron acting on the point
core of a surface atom at an x-distance is e/x2.
The atomic polarization strongly affects the WF
change [37], or the dipole and XC contributions.
The polarizing action of the field makes the atom
become a dipole proportional to the field strength,
then the moment p0 is proportional to eα0/x2.
The potential energy of the system dipole/plasma-
electron is inversely proportional to the square of
the distance electron-dipole and, simultaneously,
directly proportional to the moment p0. The poten-
tial energy of the system surface-ion/outer-electron
gets reduced by ∼α0e2/εx4. Then, we may as-
sume after Li and Li the octahedral symmetry
of the valence-electrons distribution [38] between
the centres of surface atoms. Taking ε = θ and
1/2 as the factor of proportionality, such as the
one taken in ligand-field theory for the interac-
tion induced-dipole/ion in an octahedral system of
ligands/central-ion, which is suitable for d transi-
tion metals [25, 26], we are driving at the electron
screened potential given below.

For the surface of Me, combining the attrac-
tion and repulsion or XC terms with the dipole ap-
proximation leads to the x-dependent expression
for the MLP potential energy which tends to zero at
infinity:

eΨES(x) =
−e2

4(x− x0)
+

ep0

θ (x− x0)
2 −

e2 ∝0

2θ(x− x0)
4

+
e2 ∝0

2θ(x+ x0)
4 − . . . (27)

where x > 0, x 6= x0. The second term on the
right-hand side of equation represents the sine-qua-
non dipole potential, which implies the condition
x� l for the dipole approximation. The third and
the fourth terms are related to attraction and re-
pulsion of a surface-approaching electron with a
surface quasi-ion and the quasi-ion’s image in the
metal, respectively. This potential form takes ac-
count of XC interactions (with an inner electron-
image plane assumed to be shifted by ∆x = −x0).
Diagram in Fig. 1 shows its curve together with first
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and second derivatives. Fig. 2 shows a schema of
the related surface electronic structure.

The derivative curves in Fig. 1 correspond to the
force and the electronic density. Curve −edΨES/dx
represents the force f(x), and the outer density n is
expressed by the −(θ/4πe)d2ΨES/dx2.

The electronic charge density should fulfil the
Poisson equation:

4πn(x)e
ε

=− d2

dx2 ΨES(x) (28)

for the infinite 2D plasma. The corresponding force
also must fulfil the obvious relation:

f (x) =−e
d
dx

ΨES(x) (29)

where the negative sign results from the degree of
homogeneity −1 of this potential function.

The fine structure of the potential curve includ-
ing extremes and inflection points just outside the
surface in the range from the ideal physical surface
position xs to xc is well disclosed. The minimum of
the curve is clearly connected with the metastable
surface states and the electron affinity of a neutral
surface atom. The maximum point of this curve co-
incides with the physical surface position. Omitting
the two XC terms in the expression 27 results in the
effective potential V0(x′) shown in Fig. 2, which
includes the dipole potential. It gives a valid ap-
proximation only for x > xc� l, i.e. the distances,
where the XC interactions will decay fast. Thus, the
x−dependence of MLP electrostatic potential is ex-
pressed by:

V (x) = Φv for x 6−ds in bulk phase, and:

V (x) = Φs for −ds < x < Rd−1/2 lh
in surface phase and:

V (x) = ΨES(x) for x > Rd−1/2 lh > Ra (30)

where the Rd − 1/2 lh is taken as the potential join
point. It is nicely seen from Fig. 1 that our poten-
tial ΨES with its extremes and intersection of the
inner potential Φs fulfils Feynman’s criterion for
the existence of bound states and also has a re-
alistic form [39]. It can be noticed that the inter-
section point is located just within the MS phase,

with its position 1.427 Å higher than the neutral
atom’s radius Ra, but not higher than Rd. Hence, the
ΨES(x) can be called a “double well” electrostatic
potential.

Fig. 2. Schema of electron potential relationships at
metal surface. Vertical chain line shows the
phase boundary plane distant by −ds from the
geometrical plane. Shown are also curves of typ-
ical potentials. Larger circle shows intersection
of ΨES and electron-image potential Ψim curves
with coordinates of 1.289 Å and −4.73 eV
(≈EF,s). The intersection of Yukawa potential
has coordinates 1.30 Å and −4.33 eV (≈ µ).

Fig. 2 shows a comparison of the screened
potential ΨES(x) with the electrochemical levels
and also the typical potential forms. There are the
Yukawa-type form (−4A/x′)·exp(−x′/x0); Ψim the
Coulomb unscreened −A/x′ and V0 an effective
one of −A/x′+6.1/(x′ )2, where A = 3.6 eVÅ. The
work function which usually appears in diagrams
of the literature and equals the negative of the
Fermi level, is denoted WF∞ in the figure. The 1/ks
unit was computed from formula (10.34) of refer-
ence [22] putting EF(ñ) = 10.44 eV and n0 = ñ.

A picture of an electron’s emission which is
possible owing to the presence of surface states be-
tween the A0 and A1 inflection points, is shown in
Fig. 3. The intrinsic MS-barrier field F for the re-
duced triangular potential Ψ∆ is taken as the sum of
two uniform intrinsic model fields, the image field
component −Dx and the maximum repulsion field
0.304 V/Å at the A1 point 2.2 Å. The resultant field
F corresponds to the force f(x) exerted on an out-
side test electron by the surface. In fact, the recep-
tive bound states in the region between A1 and A0
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are reflected by the negative density n, i.e. electron
“holes”.

Fig. 3. Potential energy diagram simulating an MS non-
stationary state during an electron’s emission
from metal surface. F is an intrinsic barrier field
in the region at the physical surface distant by
xs±x0 (which corresponds to rs = 3.7 ± 1). In-
tersection point of eFx and energy axis is at
(0, −Φs).

6. Discussion
Minimum and maximum of the potential ΨES

indicate the possibility of localized electron bound-
or surface states. MLP can behave as a self-excited
resonance system and the situation is favourable to
the occurrence of simple harmonic oscillation [1,
21–24]. Localized natural plasma modes are nec-
essary, in view of Earnshaw’s theorem, to stabilize
the discrete charge density distribution attributed to
the Me surface. Such a “dynamic” situation allows
for the occurrence of simple harmonic modes in
the 2D plasma medium, where the dielectric con-
stant ε must be a real number higher than zero.
The tangent yz-components of the oscillation con-
tribute to MLP longitudinal waves of conduction
electrons with bulk and surface plasmons as the
energy quanta which can be excited by electrons
or reflected photons. Critical frequency of ωp(n)
is the minimum frequency to fulfil the condition
ε > 0. Zero of the dielectric function ε is asso-
ciated with the values of the ωp(nx) in the self-
excited system. In quantum mechanical terms, the

related h̄ωp oscillation energy corresponds to a
spacing between a two of discrete energy levels in
the metal. The frequencies of MLP electrons are
higher than 1.2 × 1016 s−1 in the low density limit.
For the density ns this makes 8.0 eV which can be
attributed to surface plasmons, while for the aver-
age free electron gas density ñ it gives 14.54 eV of
Me bulk plasmons.

Oscillatory behaviour of measured potential
profiles was observed [40, 41] by the STM and
FIM techniques, for Ag nano-depositions. It was
ascribed to the screened potential and Friedel oscil-
lation around 0.12 eV, which is just about our com-
puted value of lateral oscillation resonance-energy
∆A. The slope displayed a sharp decline at about 30
and the cutoff at about 15 Å from step edge, respec-
tively [41]. The normal distance 15 Å is accepted
as characteristic of an electron potential outside the
surface [42–45]. For instance, the WF laboratory
measurements give values of the work needed to re-
move an electron from the metal to about 15 Å [45].
Above this distance from the image plane the elec-
trostatic potential is virtually homogeneous. From
the classical radial motion in the image-charge field
(such as of the V0(x) or the Kepler type), a distance
of slightly less than 15 Å can also be obtained as
the limiting distance xmax for an effective potential
energy of −2∆A. In fact, the contribution of both
four-order terms of the ΨES diminishes very fast to
tenths of a meV at 2a, and the V0(x) and ΨES(x)
curves practically converge at a distance of 5a (or
>15 Å) within ±0.01 meV. Such a deviation is well
below any surface-atom excitation energy.

Introducing the anisotropic factor l via p0 to the
electron screened potential ΨES(x) makes it be the
surface-structure sensitive. This permits an electron
to “see” the discrete Me-surface of 2 or 3 atomic
layers of the surface skin [46]. Potential ΨES(x)
is composed of an image term and three ones of
the second and fourth order including the XC re-
pulsion and attraction interactions. With its dis-
tinct peculiarities it fairly corresponds to the dou-
ble minimum potential form as seen from Fig. 1.
The maximum of ΨES falls on the ideal physi-
cal surface position xs. This position, on the abso-
lute distance scale, practically coincides with the
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maximum of Tavares-Prausnitz’s theoretical curve.
Intersection of ΨES and the inner potential Φs also
coincides with the primary minimum of their po-
tential. These features of the new pseudopotential
lead to a rough schema of the electronic structure
of the crystal above the Fermi level and outside
the MS, which is shown in Fig. 2. The electron lo-
calization and densification in the Me/Vacuum in-
terface is accompanied by chemical bond contrac-
tion and essentially affects various physical proper-
ties of meso- and nanostructures. This is typical of
under-coordinated systems [46].

The WF and affinity values obtained from the
simplified formulae are in good agreement with
tabular data. Other results are also in accord with
quantitative data of the literature. For instance, our
result for the free electron energy EF(ñ) is in accord
with the one by Paxton and van Schilfgaarde for
the LDA-calculated Fermi energy of the W(110)
crystal [10]. This agreement is meaningful because,
as asserted by Young and Clark [47], the densest
packed plane (110) with its minimum surface free
energy [48] and highest WF, is the most represen-
tative of physicochemical properties for bcc met-
als. Putting the average density ñ of free electrons
and the effective dipole length l as the amplitude
into equations 2 and 1 gives 0.228 eV for the max-
imum kinetic energy Et of the harmonic small os-
cillation. This is less than the ∆ϕ term of effec-
tive WF, and both values do not exceed the max-
imum 0.26 eV of the normal-energy thermionic
emission energy distribution half-width [14]. Us-
ing the present data, the local electrostatic energy is
obtained from the well-known formula εF2v0/8π,
which appears to exactly be equal to the effective
WF dipole term ∆ϕ and also to the unit energy
at the surface Wigner-Seitz sphere [33]. It is also
striking that our magnitude 4.267 eV for the bulk
chemical potential obtained by the semiempirical
methods is close to the value of chemical part of the
effective potential Veff of the Lang-Kohn model in
the low density limit rs = 5. This can be quantified
from Fig. 3 of paper [4] by taking the difference
between their electrostatic potential and the Veff ,
which ranges there from 4.2 to 4.4 eV inside the
positive jellium.

In conclusion, we will discuss the limiting cases
in comparison to some results of widely accepted
theoretical models. At the geometrical surface the
spherical symmetry of frontier Wigner-Seitz cells
is drastically disturbed. For metals, the electron-
density range of the Wigner-Seitz sphere param-
eter rs between 2 and 5 is proper [4–7, 48]. The
MLP length parameters ds and L correspond to the
rs range from 1 to 5.17. It should be noted after an
assertion by Wojciechowski that properly describ-
ing the electronic properties of d transition metals
requires employing two electronic density param-
eters [50]. Accordingly, a jellium-model density at
an rs of 2.19 corresponds to our free electron den-
sity ñ which is found at x ≈ 1.8 Å in the n(x) curve
(↔ rs of 3.4). The calculated characteristic length
x0 amounts to 0.529 Å which approximately equals
1 a.u. It appears equal to the result of a variational
calculation by Appelbaum and Hamann that, for
rs = 2, the magnitude of the origin shift x0 tends
to 1 a.u. [15]. In the low density limit, using the
Gell-Mann and Brueckner approximate expression
for the energy of free electron gas (formula 8.95
in [2, 7], a value of −1.36 eV is obtained for rs =
3.7 (↔ xs). The number is close to our value of the
outer potential energy level eΨc extrapolated from
the intermediate point xc down to the ideal sur-
face position xs to include the XC interactions. In
the limiting case, for x equal to Rd higher than the
atomic radius, the MLP electron density may reach
a figure of 21 × 1023 cm−3, which is only fifty
times lower than the maximum laboratory obtain-
able density of inertial confinement plasma. This
magnitude can be compared to the limiting figure
16 × 1023 cm−3, for rs equal to 1, which is ob-
tained from the relation of Wigner-Seitz sphere ra-
dius vs electron density. (This follows Hohenberg
and Kohn’s assertion [7, 51]; that the relation is ac-
curate only for rs 6 1 with the n being determined
from the expression 1/n = 4πr3

s /3).

7. Conclusions
Within the thermodynamics frame, we have

determined two intensive parameters of metal-
lattice plasma, the free electron density ñ and the
chemical potential µ. The MLP is treated as the
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Fig. 4. Close-class plane (11̄1) of a bcc metal with the ui geometrical broken bonds. Left-hand part: a section
layer of (110)-oriented crystal. Right-hand part: three top layers of (11̄1) with marked three lateral u-bond
vectors with their ends devoid of atoms. GS – the geometrical surface, IP – the primary image plane, and
PS – the position of ideal physical surface.

two-component neutral system of free electrons
and positive ions. We discern two phases in the
metal crystal, namely the isotropic bonded 3D bulk
Me phase with delocalized valence electrons and
the 2D surface phase of 2 to 3 atomic layers with
the dielectric constant less than unity. The phase
boundary position ds and the plasma polarization
length L are proposed as two limiting linear dimen-
sions of MLP. The phase boundary was calculated
in the first nearest neighbour approximation.

The novel potential ΨES is exhibiting functional
peculiarities; its form is close to the double min-
imum potential of Tavares and Prausnitz, which
was calculated using theoretical methods. It is con-
structed as a sum of four terms of the homogeneity
degree −1. These include both the surface dipole
potential and the short range interactions terms.
The first and second derivatives of the potential al-
low for a close inspection of the forces and electron
densities of the surface phase. The expected local
free electron density may reach 21 × 1023 cm−3,
which results from the second derivative of ΨES.

The obtained data of the average work function
and electron affinity as well as some other quanti-
ties are in good agreement with experimental and
theoretical values. Calculated small-oscillation en-
ergy level spacings of 14.5 and 8.0 eV are attributed
to self-excitation of bulk Me and surface plasmons,
respectively. The intrinsic surface fields range from
1 to 12 V/Å for the metal-lattice plasma. This MLP
approach also offers a qualitative picture of the
surface electronic structure and electron emission.
Feasible absolute scale of the associated nano-
distances from the surface is presented. This may
contribute to a better understanding of theoretical
models which are employed in chemical physics,
catalysis and materials science of nanostructures.
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APPENDIX
The phase-boundary position, or the MLP char-

acteristic length parameter ds(hkl) is a function of a
scalar product as defined in the first nearest neigh-
bour approximation using the relation:

ds(hkl) = Qh ·urdhkl (31)

where ur is the primary bond vector of the bond
order relevant to bcc structure, h = (hkl) is the
surface normal, and Q is the parity factor of h, k,
l Miller indices, equal to 1 or 2. The interplanar
spacing dhkl is given by the crystallographic for-
mula a/Q(h2+ k2+ l2)

1
2 . The normal dimension ds

of the MS phase is obtained taking the dhkl average
value over the seven close class planes [16] of bcc
structure that represent a variety of actual crystal-
grain orientations. A primitive unit cell’s area S0 is
also taken as the arithmetic mean of unit-cell areas
of these seven planes Shkl. The ds is almost equal
to the maximum value, i.e. the one obtained for the
(111) plane.

The unit stereographic triangle (110)-(111)-
(100), at the centre of the stereographic half-
projection (110)-pole oriented, constitutes the base
for bcc structure in the Mackenzie et al. theory [18].
The close-class plane of the {111} family for a bcc
Me-crystal shown in the figure is chosen to illus-
trate the broken (“dangling”) u-bonds representa-
tion. In the first nearest neighbour approximation,
the relevant ‘bond order’ consists of four u-bond
vectors of the <111> family which is relevant to
the region 2 of the unit stereographic triangle. It is
worth noting that, in contrast to the non-directional
bonding in the homogeneous bulk Me phase, the
typical surface density of the broken or unsatu-
rated bonds is about 3.5× 1015 cm−2. Such a num-
ber and surfaces, like the one shown on the right-
hand side of Fig. 4 (with its metastable lattice sites)
may account for the catalytic specificity of several
metals.
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