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Structural, electronic and optical properties of MgxCd1−xSe (0 6 x 6 1) are calculated for the first time using density
functional theory. Our results show that these properties are strongly dependent on molar fraction of particular components –
x. The bond between Cd and Se is partially covalent and the covalent nature of the bond decreases as the concentration of Mg
increases from 0 % to 100 %. It is found that MgxCd1−xSe has a direct band gap in the entire range of x and the band gap
of the alloy increases from 0.43 to 2.46 eV with the increase in Mg concentration. Frequency dependent dielectric constants
ε1(ω),ε2(ω) refractive index n(ω) are also calculated and discussed in detail. The peak value of refractive indices shifts to
higher energy regions with the increase in Mg. The larger value of the extraordinary refractive index confirms that the material
is a positive birefringence crystal. The present comprehensive theoretical study of the optoelectronic properties of the material
predicts that it can be effectively used in optoelectronic applications in the wide range of spectra: IR, visible and UV. In addition,
we have also predicted the heat capacities (CV ), the entropy (S), the internal energy (U) and the Helmholtz free energy (F) of
MgxCd1−xSe ternary alloys.
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1. Introduction

Mg-based II – VI semiconductors have recently
attracted much attention because of their potential
applications in the field of blue-green light sources
and other optoelectronic devices (i.e. construction
of blue-green laser diode operating at room tem-
perature (RT)) [1]. These alloys have the possi-
bility of tuning the band gap and lattice constants
by varying the Mg concentration. MgxCd1−xSe al-
loys have attracted great attention because they are
promising for the fabrication of full-color visible
optical devices due to a large difference in the
energy gaps Eg of the binary constituents (CdSe,
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Eg = 1.74 eV; MgSe, Eg = 4.0 eV) [2] To date,
only few papers have been reported on the recom-
bination processes in MgxCd1−xSe crystals and the
fabrication of green-light-emitting structures using
n-CdSe and p-ZnTe regions separated by a graded
MgxCd1−xSe injection region [1–8].

In the present theoretical work, the band gap
of zinc-blende CdSe has been varied systemati-
cally by alloying with Mg. In order to investigate
optoelectronic nature of these alloys, their struc-
tural, electronic and optical properties are calcu-
lated. All calculations are based on density func-
tional full-potential linear muffin-tin orbital (FP-
LMTO) method with Perdew-Wang generalized
gradient approximation (GGA).
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2. Method of calculations
The calculations reported here were carried out

using the ab initio full-potential linear muffin-tin
orbital (FP-LMTO) method [9–12] as implemented
in the Lmtart code [13]. The exchange and cor-
relation potential was calculated using the gen-
eralized gradient approximation (GGA) [14]. The
FP-LMTO is an improved method compared to
previous LMTO techniques, and treats muffin-tin
spheres and interstitial regions on the same foot-
ing, leading to improvements in the precision of
the eigenvalues. At the same time, the FP-LMTO
method, in which the space is divided into inter-
stitial regions (IR) and non-overlapping muffin-tin
spheres (MTS) surrounding the atomic sites, uses
a more complete basis than its predecessors. In the
IR regions, the basis set consists of plane waves. In-
side the MT spheres, the basis sets is described by
radial solutions of one particle Schrödinger equa-
tion (at fixed energy) and their energy derivatives
multiplied by spherical harmonics. The charge den-
sity and the potential are represented inside the
MTS by spherical harmonics up to lmax = 6. The
integrals over the Brillouin zone are performed up
to 35 special k-points for binary compounds and
27 special k-points for the alloys in the irreducible
Brillouin zone (IBZ) using Blochl’s modified tetra-
hedron method [15]. The self-consistent calcula-
tions are considered to be converged when the total
energy of the system is stabled within 10−6 Ry. In
order to avoid the overlap of atomic spheres, the
MTS radius for each atomic position is taken to be
different for each composition. We point out that
the use of the full-potential calculation ensures that
the calculation is not completely independent of the
choice of sphere radii.

Structural properties of MgxCd1−xSe are calcu-
lated using Murnaghan’s equation of state [16]:

E(V ) = E0 +
B0V
B′0

(
(V0/V )B′0

B′0−1
+1

)
− B0V0

B′0−1

(1)

where E0 is the total energy of the supercell, V0
is the unit volume, B0 is the bulk modulus at zero
pressure and B′0 is the derivative of bulk modulus
with respect to pressure.

Optical properties of MgxCd1−xSe are calcu-
lated using a fine k mesh of 1500 points. The di-
electric constant of a crystal depends on the elec-
tronic band structure and its investigation by op-
tical spectroscopy is a powerful tool in the deter-
mination of the overall optical behavior. It can be
divided into two parts, real and imaginary:

ε(ω) = ε1(ω)+ iε2(ω) (2)

The imaginary part of the complex dielectric con-
stant ε2(ω) in cubic symmetry compounds can be
calculated by the following relation [17, 18]:

ε2(ω) =
8

2πω2 ∑
nn

∫
|pnn′(k)|2 dSk

∇ωnn′(k)
(3)

while ε1(ω) is used to calculate the real part of the
complex dielectric-constant:

ε1(ω) = 1+
2
π

p
∫

∞

0

ω ′ε2(ω
′)

ω ′2−ω ′2
dω
′ (4)

Refractive index is calculated in terms of real
and imaginary parts of dielectric constant by the
following relation:

n(ω) =
1√
2
[{ε1(ω)2 + ε2(ω)2}

1
2 + ε1(ω)]

1
2 (5)

3. Results and discussion
3.1. The crystal structure

The starting binary compound for all the ternary
alloys, i.e. CdSe has been modeled in the B3 struc-
ture and the alloy’s unit cell has then been obtained
for the compositions x = 0.25, 0.50, 0.75, and 1.0
by replacing one, two, three, and four Cd atoms,
respectively, from the CdSe lattice by Mg atoms
for obtaining the MgxCd1−xSe alloys. The crystal
structure of CdSe and MgSe is zinc-blende with
space group F4̄3m (no. 216). We performed the
structural optimization by minimizing the total en-
ergy with respect to the cell parameters and also the
atomic positions.

The total energies calculated as a function of
unit cell volume were fitted to the Murnaghan’s
equation of state. The corresponding equilibrium
lattice constants and bulk moduli both for binary



FP-LMTO study of structural, electronic, thermodynamic and optical properties of MgxCd1−xSe. . . 721

compounds and their alloys are given in Table 1.
Considering the general trend that GGA usually
overestimates the lattice parameters [19], our GGA
results of binary compounds are in reasonable
agreement with the experimental and other calcu-
lated values. Usually, in the treatment of alloys, it
is assumed that the atoms are located at the ideal
lattice sites and the lattice constant varies linearly
with composition x according to the so-called Veg-
ard’s law [20]. However, violation of this linear law
has been reported in semiconductor alloys both ex-
perimentally [21, 22] and theoretically [23, 24]. We
show in Fig. 1 the effect of Mg substitutional im-
purities on the lattice parameters for both the GGA
and VCA approaches. We can note no deviation
from Vegard’s law for x concentration in the range
of 0 to 1. An analytical relation for the composi-
tional dependence of the Mg lattice parameter is
given by the quadratic fit:

ax = 6.259−0.251x+0.001x2 (6)

Fig. 1 and 2 show the variation of the calculated
equilibrium lattice constant and bulk modulus as
a function of concentration x for the MgxCd1−xSe
alloy. The obtained results for the composition de-
pendence of the calculated equilibrium lattice pa-
rameter almost follow Vegard’s law [20]. In go-
ing from CdSe to MgSe, when the Mg-content in-
creases, the values of the lattice parameters of the
MgxCd1−xSe alloy decrease. This is due to the fact
that the size of Mg atom is smaller than that of Cd
atom. On the opposite side, one can see from Fig. 2
that the value of the bulk modulus increases as the
Mg concentration increases.

3.2. The electronic properties
The calculated band structure for MgxCd1−xSe

(0 6 x 6 1) is presented in Fig. 2. It is clear from
the figure that MgxCd1−xSe (0 6 x 6 1) is a direct
band gap material. The substitution of Mg does not
affect the indirect band gap nature of the compound
but increases the gap, which is clear from Fig. 2d.
The direct band gap also increases from 0.43 to
2.46 eV with the increase in Mg concentration. It
is obvious from the data presented in Table 2 that
our calculated values for the band gaps of CdSe and

Fig. 1. Variation in lattice constant B of MgxCd1−xSe
as a function of composition x.

MgSe are closer to theoretical results. The reason
for our better results is the use of effective Perdew-
Wang potential in the GGA scheme [14], and high
number of k-points (3500). DFT always underesti-
mates the band gaps [33]; to avoid this problem we
calculated the direct band gap bowing coefficients
using the following relation [34, 35]:

Eg
AxB1−xc = xEg

AC +(1− x)Eg
BC− x(1− x)b (7)

where EAxB1−xc
g , EAC

g and EBC
g are the energy band

gaps of the ternary alloys AxB1−xc and its binary
parents AC and BC, respectively. The curvature b
is commonly known as the band gap bowing pa-
rameter. For Cd1−xMgxSe, we have taken into ac-
count the composition linear dependence on b. The
results obey the following variations:

Cd1−xMgxSe→ EΓ−Γ = 0.438+1.833x+0.194x2

EΓ−X = 1.807+1.142x−0.994x2

(8)

The origin of the band structures presented in
Fig. 2 can be understood by the corresponding
density of states [36]. It is clear from the results
that the conduction band is mainly composed of
Mg-3s state for all ternary alloys. Fig. 2 (a – c)
shows that the lower part of the valence band is
composed of Cd-4d and the upper part is mainly
dominated by Se-4p state. The variation in the band
gap of MgxCd1−xSe (0 6 x 6 1) provides promis-
ing results of the use of the compound in optoelec-
tronic devices working in visible to ultraviolet re-
gion. Depending on the need and requirement of
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Table 1. Lattice constants a and bulk modulus B of MgxCd1−xSe compared with experimental results, Vegard’s
law and other theoretical calculations.

Lattice constant a (Å) Bulk modulus B (GPa)[B′]
x This work Exp Vegard’s law Other calc. This work Exp Other calc.

0 6.26 6.052a 6.025b 42.92 [4.18] 55c 54d

0.25 6.19 6.197 44.4 [3.94]
0.5 6.14 6.135 43.51 [4.33]
0.75 6.07 6.072 45.43 [4.07]

1 6.01 5.89e 5.70f, 5.89g 62.16 [4.50] 48[4.27]g, 50[4.02]h

5.88h, 5.92i, 5.893j 49[3.75]i, 51[4.01]j

a[23], b[24], c[25], d[26], e[27], f[28], g[29], h[30], i[31], j[32].

Table 2. Fundamental direct and indirect band gaps of MgxCd1−xSe compared with the experimental and other
calculations.

Direct energy band gap, EΓ−Γ
g Indirect energy band gap, EΓ−x

g

x This work Exp Other calc. This work Exp Other calc.

0 0.43 1.75a 0.34b ,0.26c 2.00 5.4d 4.37e, 3.82f

0.25 0.94 2.22a 1.65
0.5 1.36 2.7g [x = 0.44] 2.12

Zn0.5Mg0.5Se 3.39a

0.75 1.95 2.50
1 2.46 3.59h [297K] 3.67i 2.56 j 1.76 3.2e

a[37], b[24], c[25], d[38], e[39], f[40], g[41], h[42], i[43], j[44].

a particular application, any desired band gap be-
tween 0.43 and 2.46 eV can be achieved.

The physical origins of the bowing parame-
ter were investigated following the approach of
Zunger and co-workers [45], which decomposes
into three contributions:

b = bV D +bCE +bSR (9)

The corresponding contribution to the total gap
bowing parameter bVD represents the relative re-
sponse of the band structure of the binary com-
pounds AB and AC to hydrostatic pressure, which
here arises from the change in their individual
equilibrium lattice constants relative to the alloy
value a = a(x) (from Vegard’s rule). The second
contribution, the charge-exchange (CE) contribu-
tion bCE, reflects a charge transfer effect, which
is due to the different (averaged) bonding behav-
ior at the lattice constant a. The final step rep-
resent changes due to the structural relaxation

(SR) in passing from the unrelaxed to the re-
laxed alloy by bSR. The calculated bowing pa-
rameter contributions of the direct band gap are
presented in Table 3. It is clearly seen that the cal-
culated from the polynomial function bowing pa-
rameter within GGA is very close to the results ob-
tained by the Zunger approach [45, 46]. In the case
of MgxCd1−xSe, the different contributions to the
direct bowing parameter are found to be very small.
The main contribution to the bowing parameter is
raised from the structural relaxation effect and the
relative response. This can be clearly attributed to
the large iconicity mismatch of the binary com-
pounds MgSe (fi = 0.79), and CdSe (fi = 0.13),
and the weak mismatch of the lattice constants of
the corresponding binary compounds, respectively.

3.3. The optical properties

The calculated imaginary part of the dielec-
tric constant for MgxCd1−xSe (0 6 x 6 1) in the
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Fig. 2. Calculated band structures of (a) Cd0.75Mg0.25Se, (b) Cd0.5Mg0.5Se, (c) Cd0.25Mg0.75Se and (d) band gap
as a function of x.

Table 3. Decomposition of optical bowing into volume deformation (VD), charge exchange (CE), and structural
relaxation (SR) contributions compared with that obtained by a quadratic fit (all values are in eV).

System Using Zunger From polynomial Other
approach function fit calc.

MgxCd1−xSe
bV D 1.46
bCE −2.52
bSR 1.40
b 0.34 0.19 0.2a [x 6 0.32]

a[47]

Table 4. Refractive index, optical dielectric constant of MgxCd1−xSe alloys for different compositions x.

Refractive index n Optical dielectric constant ε
x This work Exp Other calc. This work Exp Other calc.

0 2.02 2.64a 2.49b 2.5c 4.11 5.2d 5.05e 4.89f

0.25 1.89 3.59
0.5 1.82 3.33
0.75 1.74 3.03

1 1.4 2.03b 1.98 7.65g 3.8g

a[48], b[49], c[50], d[51], e[52], f[53], g[54].
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Fig. 3. Frequency dependent imaginary part and
real part of dielectric functions/constants of
MgxCd1−xSe.

energy range of 0 to 13.5 eV is shown in Fig. 3. It
is clear from the figure that for x = 0, 0.25, 0.50,
0.75 and 1.0 the critical points in the imaginary part
of the dielectric function occur at about 0.43, 0.81,
1.36, 1.95 and 1.11 eV, respectively. These points
are closely related to the direct band gaps, EΓ−Γ

g ;
0.43, 0.94, 1.36, 1.95 and 2.46 eV of MgxCd1−xSe
for the corresponding values of x = 0, 0.25, 0.50,
0.75 and 1. The calculated real parts of the complex

dielectric constant ε1(ω) for MgxCd1−xSe are pre-
sented in Fig. 3. It is clear from the figure that the
static dielectric constant, ε1(ω), is strongly depen-
dent on the band gap of the compound. The calcu-
lated values of ε1(ω) for MgxCd1−xSe at x = 0,
0.25, 0.50, 0.75 and 1.0 are 4.13, 3.55, 3.32, 3.02
and 4.28 for corresponding direct band gaps 2.00,
1.65, 2.12, 2.50 and 1.76 eV, respectively. These
data explain that the smaller energy gap yields
larger ε1(0) value. This inverse relation of ε1(ω)
with the band gap can be explained by the Penn
model [40]:

ε1(0)≈ 1+(h̄ωp/Eg)
2 (10)

The calculated values of the optical dielectric
constant ε(ω) and refractive index n(ω), are listed
in Table 4. Comparison with the available data has
been made where possible. As compared with other
calculations, it seems that the values of n(ω) ob-
tained from FP-LMTO method for the end-point
compounds (i.e. CdSe and MgSe) are in good
agreement with theoretical results together with the
refractive index n(ω) =

√
ε at zero pressure. Note

that ε is obtained from the zero-frequency limit
of ε1(ω), and it corresponds to the electronic part
of the static dielectric constant of the material, a
parameter of fundamental importance in many as-
pects of materials properties. It is clear from Fig. 4
that the refractive index of the material decreases
with the increase in the Mg concentration. Fig. 4
shows the variation of the computed static optical
dielectric constant and static refractive index ver-
sus composition of MgxCd1−xSe alloys. The com-
puted static optical dielectric constant and static re-
fractive index versus composition were fitted by
polynomial equation. The results are summarized
as follows:

MgxCd1−xSe→

{
ε0=4.0148+0.6708x+1.2571x2

n0=1.9905+0.0645x−0.4919x2

(11)

3.4. Thermodynamic properties
In this study, the quasi-harmonic Debye

model [54–58] is used to obtain the thermodynamic
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Fig. 4. Computed static optical dielectric constant and
static refractive index as a function of composi-
tion for MgxCd1−xSe.

properties of MgxCd1−xSe. The non-equilibrium
Gibbs function G∗(V, P, T) is expressed as:

G∗(V,P,T ) = E(V )+PV +Avib[Θ(V );T ] (12)

Here, E(V) is the total energy per unit cell for
MgxCd1−xSe, PV is the constant hydrostatic pres-
sure condition, Θ(V) is the Debye temperature, and
the vibrational Helmholtz free energy Avib can be
written as [56, 57]:

Avib(Θ;T )=nkT
[

9
8

Θ

T
+3ln(1− e−Θ/T )−D

(
Θ

T

)]
(13)

where n is the number of atoms per formula unit,
D(Θ/T) is the Debye integral. For an isotropic
solid [59]:

Θ =
h̄
K
[6π

2V 1/2n]1/3 f (σ)

√
BS

M
(14)

where M is the molecular mass per unit cell and BS

is the adiabatic bulk modulus. The non-equilibrium
Gibbs function G∗(V, P, T) as a function of (V; P, T)
can be minimized with respect to volume V as:[

δG∗(V,P,T )
δV

]
P,T

= 0 (15)

The thermal properties, such as internal energies
U, entropy S, heat capacity at constant volume CV,
and thermal expansion α are taken as:

U = nkT
[

9
8

Θ

T
+3D

(
Θ

T

)]
(16)

S = nK
[

4D
(

Θ

T

)
−3ln

(
1− e−

Θ

T

)]
(17)

CV = 3nk
[

4D
(

Θ

T

)
− 3Θ/T

eR/T−1

]
(18)

α =
γcv

BTV
(19)

Here, γ is the Grüneissen parameter, which is given
by the following equation [54]:

γ =−
(

d lnΘ(V )

d lnV

)
(20)

The variation of the entropy (S) and the internal en-
ergy (U) versus temperature (T) of the compounds
is shown in Fig. 5 (using GGA). It can be seen from
this figure that when the temperature increases, the
values of the internal energy (U) for MgxCd1−xSe
increase gradually. Also, the value of U at zero tem-
perature, that represent the zero point motion, is
4.36 kJ/mol·cell and 13.370 kJ/mol·cell for CdSe
and MgSe, respectively.

Fig. 6 represents the heat capacity (CV) as a
function of temperature of the ternary alloys using
GGA approach. It is obvious that at low tempera-
ture, CV is proportional to T3 [60], From 0 to about
400 K, CV increases exponentially and then at high
temperature (T > 400 K), the constant volume heat
capacity CV tends to the Dulong-Petit limit [61]
(49.87 J/mol·K−1) for the parent compounds CdSe
and MgSe. In addition, CV tends to the Dulong-
Petit limit (197.47 J/mol·K−1) for MgxCd1−xSe al-
loys (x = 0.25, 0.5 and 0.75). The temperature ef-
fect on bulk modulus (B) is given in Fig. 7 and it
can be seen that B of Cd1−xMgxSe alloys decreases
as temperature increases because the cell volume
rapidly changes when the temperature is increased.
A third-order polynomial fitting of B-T data at zero
pressure is given as:

MgSe→B(T )=68.37+0.0016T−5.86T 2+2.95T 3

(21)

(P = 0) for T < 1000 K

CdSe→B(T )=60.07−0.035T−3.58T 2+1.85T 3

(22)

(P = 0) for T < 1000 K
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Fig. 5. Variation of the entropy (S) and the inter-
nal energy (U) versus temperature (T) of the
MgxCd1−xSe alloys at different compositions x.

At zero pressure and T = 300 K, the bulk modu-
lus is equal to 50.29 and 62.57 GPa for the parent
compounds CdSe and MgSe.

4. Conclusions
Density functional calculations have been car-

ried out for the first time to investigate struc-
tural and optoelectronic properties of MgxCd1−xSe.
Structure as well as bonding nature of the mate-
rial significantly varies with Mg concentration. The
lattice parameter at different compositions is found
to vary almost linearly, thus, obeying Vegard’s law.
The calculated band structures predicts that the al-
loys have direct band gap, which increases with the
increase in x. On the basis of the wide range of fun-
damental direct band gaps (0.43 to 2.46 eV) and
indirect band gaps (1.65 to 2.50 eV) between x =
0.25 and x = 0.75, it can be concluded that the

Fig. 6. Variation of the heat capacities CV versus tem-
perature T for MgxCd1−xSe alloys.

Fig. 7. Variation of bulk modulus versus temperature T
for MgxCd1−xSe alloys.

material can be used in optoelectronic devices
working in the IR and visible regions of spec-
trum. Also, the thermal effect on heat capacities
has been investigated using the quasi-harmonic De-
bye model. To the best of the author’s knowledge,
no experimental values of the thermodynamic func-
tions of the parent compounds CdSe and MgSe are
found.
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