Synthesis, effect of γ-ray and electrical conductivity of uranium doped nano LiMn2O4 spinels for applications as positive electrodes in Li-ion rechargeable batteries

Open access

Abstract

LiMn2O4 is an attractive candidate cathode material for Li-ion rechargeable batteries, but it suffers from severe capacity fading, especially at higher temperature (55 °C) during charging/discharging processes. Recently, many attempts have been made to synthesize modified LiMn2O4. In this work, a new study on the synthesis of pure and U4+-doped nano lithium manganese oxide [LiMn2−x UxO4, (x = 0:00, 0.01, 0.03)] via solid-state method was introduced. The synthesized LiMn1:97U0:03O4 was irradiated by γ-radiation (10 and 30 kGy). The green samples and the resulting spinel products were characterized using thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared (IR), and scanning electron microscopy (SEM) measurements. XRD and SEM studies revealed nano-sized particles in all prepared samples. Direct-current (DC) electrical conductivity measurements indicated that these samples are semiconductors and the activation energies decrease with increasing rare-earth U4+ content and γ-irradiation. ΔEa equals to 0.304 eV for LiMn1:99U0:01O4, ΔEa is 0.282 eV for LiMn1:97U0:03O4 and decreases to ΔEa = 0:262 eV for γ-irradiated LiMn1:97U0:03O4 nano spinel. The data obtained for the investigated samples increase their attractiveness in modern electronic technology.

[1] Julien C.M., Mauger A., Zaghib K., Groult H., Inorganics, 2 (2014), 132. http://dx.doi.org/10.3390/inorganics2010132

[2] Nagaura T., Tozawa K., Prog. Batteries Sol. Cells, 9 (1990), 209.

[3] Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B., Mater. Res. Bull., 15 (1980), 783. http://dx.doi.org/10.1016/0025-5408(80)90012-4

[4] Thackeray M.M., David W.I.F., Bruce P.G., Goodenough J.B., Mater. Res. Bull., 18 (1983), 461. http://dx.doi.org/10.1016/0025-5408(83)90138-1

[5] Thackeray M.M., Johnson P.J., De Picciotto L.A., Bruce P.G., Goodenough J.B., Mater. Res. Bull., 19 (1984), 179. http://dx.doi.org/10.1016/0025-5408(84)90088-6

[6] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B., J. Electrochem. Soc., 144 (1997), 1188. http://dx.doi.org/10.1149/1.1837571

[7] Peres J.P., Weill F., Delmas C., Solid State Ionics, 116 (1999), 19. http://dx.doi.org/10.1016/S0167-2738(98)00239-2

[8] Ohzuku T., Makimura Y., Chem. Lett., 30 (2001), 642. http://dx.doi.org/10.1246/cl.2001.642

[9] Tarascon J.M., Mc Kinnon W.R., Coowar F., Bowmer T.N., Amatucci G., Guyomard D., J. Electrochem. Soc., 141 (1994), 1421. http://dx.doi.org/10.1149/1.2054941

[10] Zaghib K., Mauger A., Groult H., Goodenough J.B., Julien C.M., Materials, 6 (2013), 1028. http://dx.doi.org/10.3390/ma6031028

[11] Chan H.W., Duh J.G., Sheen S.R., Surf. Coat. Tech., 188 (2004), 116. http://dx.doi.org/10.1016/j.surfcoat.2004.08.065

[12] Molenda M., Dziembaj R., Podstawka E., Proniewicz L.M., Piwowarska Z., J. Power Sources, 174 (2007), 613. http://dx.doi.org/10.1016/j.jpowsour.2007.06.117

[13] Javaprakash N., Kalaiselvi N., Doh C.H., Gangulibabu, Bhuvaneswari D., J. Appl. Electrochem., 40 (2010), 2193. http://dx.doi.org/10.1007/s10800-010-0187-6

[14] Du G., Sharma N., Peterson V.K., Kimpton J.A., Jia D., Guo Z., Adv. Funct. Mater., 21 (2011), 3990. http://dx.doi.org/10.1002/adfm.201100846

[15] Singh P., Sil A., Nath M., Ray S., Ceram.-Silikaty, 54 (2010), 38.

[16] Amaral F.A., Bocchi N., Brocenschi R.F., Biaggio S.R., Rocha-Filho R.C., J. Power Sources, 195 (2010), 3293. http://dx.doi.org/10.1016/j.jpowsour.2009.12.002

[17] Liu D.Q., Liu X.Q., He Z.Z., Mater. Chem. Phys., 105 (2007), 362. http://dx.doi.org/10.1016/j.matchemphys.2007.04.073

[18] Saad F.A., Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G., Int. J. Electrochem. Sc., 9 (2014), 3904.

[19] Sakunthala A., Reddy M.V., Selvasekarapandian S., Chowdari B.V.R., Selvin P.C., Electrochim. Acta, 55 (2010), 4441. http://dx.doi.org/10.1016/j.electacta.2010.02.080

[20] Wu H.M., Tu J.P., Chen X.T., Li Y., Zhao X.B., Cao G.S., J. Solid State Electr., 11 (2007), 173. http://dx.doi.org/10.1007/s10008-005-0082-y

[21] Ein Eli Y., Urian R.C., Wen W., Mukerjee S., Electrochim. Acta, 50 (2005), 1931. http://dx.doi.org/10.1016/j.electacta.2004.09.002

[22] Sclar H., Haik O., Menachem T., Grinblat J., Leifer N., Meitav A., Luski S., Aurbach D., J. Electrochem. Soc., 159 (2012), A228. http://dx.doi.org/10.1149/2.032203jes

[23] Liu D.Q., He Z.Z., Liu X.Q., J. Alloy. Compd., 440 (2007), 69. http://dx.doi.org/10.1016/j.jallcom.2006.09.013

[24] Wu H.M., Belharouak I., Abouimrane A., Sun Y.K., Amine K., J. Power Sources, 195 (2010), 2909. http://dx.doi.org/10.1016/j.jpowsour.2009.11.029

[25] Wang H.L., Tan T.A., Yang P., Lai M.O., Lui L., J. Phys. Chem., 115 (2011), 6102. http://dx.doi.org/10.1021/jp110868t

[26] Son J.T., Park K.S., Kim H.G., Chung H.T., J. Power Sources, 126 (2004), 182. http://dx.doi.org/10.1016/j.jpowsour.2003.07.010

[27] Zhou W.J., He B.L., Li H.L., Mater. Res. Bul., 43 (2008), 2285. http://dx.doi.org/10.1016/j.materresbull.2007.08.013

[28] Wang L., Zhao J.S., Guo S.H., He X.M., Jiang C.Y., Wan C.R., Int. J. Electrochem. Sci., 5 (2010), 1113.

[29] Tu J., Zhao X.B., Cao G.S., Tu J.P., Zhu T.J., Mater. Lett., 60 (2006), 3251. http://dx.doi.org/10.1016/j.matlet.2006.02.089

[30] Sun H.B., Chen Y.G., Xu C.H., Zhu D., Huang L.H., J. Solid State Electr., 16 (2012), 1247. http://dx.doi.org/10.1007/s10008-011-1514-5

[31] Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G., J. Electron. Mater., 42 (2013), 1275. http://dx.doi.org/10.1007/s11664-013-2588-x

[32] Balaji S.R.K., Mutharasu D., Shanmugan S., Subramanian N.S., Ramanathan K., Ionics, 16 (2010), 351. http://dx.doi.org/10.1007/s11581-009-0400-y

[33] Helan M., Berchmans L.J., Kumari V.S.S., Ravisankar R., Shanmugam V.M., Mater. Res. Innov., 15 (2010), 130. http://dx.doi.org/10.1179/143307511X12998222918958

[34] Li C., Fan Y.L., Li S.Z., Xie B., Bi L., Yang S.T., Rare Metals, 25 (2006), 58. http://dx.doi.org/10.1016/S1001-0521(07)60045-X

[35] Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G., Chem. Mater. Res., 3 (2013), 15.

[36] El-Batal F.H., Abo-Naf S.M., Ezzldin F.M., Indian J. Pure Appl. Phys., 43 (2005), 579.

[37] Drobny J.G., Ionizing Radiation and Polymers: Principles, Technology, and Applications, 1st ed., William Andrew Publishing, Norwich, 2012.

[38] Liu Q., Wang S., Tan H., Yang Z., Zeng J., Energies, 6 (2013), 1718. http://dx.doi.org/10.3390/en6031718

[39] Mandal S., Rojas R.M., Amarilla J.M., Calle P., Kosova N.V., Anufrienko V.F., Rojo J.M., Chem. Mater., 14 (2002), 1598. http://dx.doi.org/10.1021/cm011219v

[40] Ikhsanov N.R., Astrophys. Space Sci., 184 (1991), 297. http://dx.doi.org/10.1007/BF00642978

[41] L’Annunziata M.F., Radioactivity: Introduction and History, Elsevier, Amsterdam, 2007.

[42] Rougier C.J., Nazri G.A., Julien C., Mater. Res. Soc. Symp. Proc., 453 (1997), 647.

[43] Rougier C.J., Nazri G.A., Julien C., Ionics, 3 (1997), 170. http://dx.doi.org/10.1007/BF02375613

[44] He Z.-Q., Xiong L.-Z., Wu X.-M., Chen S., Huang K.-L., Trans. Nonferrous Met. Soc. China, 20 (2010), s257. http://dx.doi.org/10.1016/S1003-6326(10)60051-9

[45] Wang G.G., Wang J.M., Mao W.Q., Shao H.B., Zhang J.Q., Ca C.N., J. Solid State Electr., 9 (2005), 524. http://dx.doi.org/10.1007/s10008-004-0607-9

[46] Patterson A.L., Phys. Rev., 56 (1939), 978. http://dx.doi.org/10.1103/PhysRev.56.978

[47] Bockris J.O’M., Reddy A.K.N., Modern Electrochemistry, Plenum Press, New York, 1998.

[48] Abou-Sekkina M.M., Saad F.A., El-Metwaly F.G., Khedr A.M., Mater. Sci.-Poland, in press (2014).

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 181 24
PDF Downloads 57 57 5