

Influence of different materials on the microstructure and optical band gap of α -Fe₂O₃ nanoparticles

P. Mallick*

Department of Physics, North Orissa University, Takatpur, Baripada 757003, India

Composites of hematite (α -Fe₂O₃) nanoparticles with different materials (NiO, TiO₂, MnO₂ and Bi₂O₃) were synthesized. Effects of different materials on the microstructure and optical band gap of α -Fe₂O₃ nanoparticles were studied. Crystallite size and strain analysis indicated that the pure α -Fe₂O₃ nanoparticles were influenced by the presence of different materials in the composite sample. Crystallite size and strain estimated for all the samples followed opposite trends. However, the value of direct band gap decreased from ~2.67 eV for the pure α -Fe₂O₃ nanoparticles to ~2.5 eV for α -Fe₂O₃ composites with different materials. The value of indirect band gap, on the other hand, increased for all composite samples except for α -Fe₂O₃/Bi₂O₃.

Keywords: iron oxide; composite; microstructure; UV-Vis spectroscopy

© Wroclaw University of Technology.

1. Introduction

In recent years, research on nanocomposite materials composed of nanometer-sized magnetic particles has been a subject of intense interest since the composites exhibit unique electronic, magnetic and optical properties [1]. Among various magnetic systems, iron oxides, especially hematite (α - Fe_2O_3) has attracted considerable attention as it is widespread in nature, nontoxic and an important industrial product [2–4]. It has been observed that the properties of α -Fe₂O₃ improve when it is used as a composite with other materials. α -Fe₂O₃ composites with different materials have been considered as potential candidates for pseudocapacitors, photocatalysis, high-performance anode material for lithium ion batteries, electromagnetic wave absorption materials etc. Sarkar et al. [5] have reported that α -Fe₂O₃/MnO₂ nanoheterostructures exhibit excellent specific capacitance, high energy density, high power density, and long-term cyclic stability as compared with the bare α -Fe₂O₃ nanowire electrodes. Their studies indicated that the α -Fe₂O₃/MnO₂ nanoheterostructure architecture is very promising for the next-generation

high-performance pseudocapacitors. Tang et al. [6] have reported that α -Fe₂O₃/TiO₂ composite hollow spheres show magnetic characteristics at room temperature and good photocatalytic activity under visible-light irradiation compared to the single-component α -Fe₂O₃ particles. Enhanced photocatalytic activity has been observed for α -Fe₂O₃/graphene oxide composite [7, 8]. McDonald et al. [9] have shown that Fe₂O₃/ZnFe₂O₄ composite electrode shows a significantly enhanced photocurrent response for use in solar water oxidation as compared to the bare Fe₂O₃ electrode. Zhu et al. [10] have reported that reduced graphene oxide (RG-O)/Fe₂O₃ composite shows improvement of electrochemical performance as compared to pure RG-O and nanoparticle Fe₂O₃. Their study indicated that the nanostructured RG-O/Fe₂O₃ composite can be used as a high-performance anode material for lithium ion batteries. RG-O/Fe₂O₃ composite has also been shown to exhibit excellent microwave absorbability, appropriate to use it as a high performance electromagnetic wave absorption material [11]. Xiao et al. [12] have synthesized Fe₂O₃/graphene composites with different contents of graphene. These authors reported that the composite with graphene mass content of 30 %exhibits excellent cyclability and rate capability in-

^{*}E-mail: pravanjan_phy@yahoo.co.in

dicating the good potential of the composite as an anode material for lithium ion batteries. Cheng et al. [13] have reported that α -Fe₂O₃/C nanocomposite exhibits excellent cycling performance and rate capability as compared to bare α -Fe₂O₃ indicating the composite material as an anode material for lithium-ion batteries.

In the present paper, we study the evolution of microstructure and optical band gap of α -Fe₂O₃ nanoparticle in the presence of different materials (NiO, TiO₂, MnO₂ and Bi₂O₃) in the composite.

2. Experimental

For the preparation of composite samples, α -Fe₂O₃ and NiO nanoparticles were synthesized by chemical route following the procedure adopted in [14]. Commercially available powders of TiO₂, MnO₂ and Bi₂O₃ (all from MERCK, India) were used for making the nanocomposites. A mixture was prepared by taking α -Fe₂O₃ nanoparticles and other materials in the ratio of 0.9:0.1 separately. Then the mixture was grounded thoroughly and pressed to pellets. These pellets were annealed at 500 °C for 1 hour in order to get the required nanocomposite sample.

The structural and microstructural characterizations of composite samples were done by using Xray diffractometer (Bruker, Model: D8 Advance) with CuK α radiation. UV-Vis characterizations of the samples were performed using diffuse reflectance spectroscopy with a double beam UV-Vis spectrophotometer (Simadzu, UV-2450) equipped with an integrating sphere assembly.

3. Results and discussion

Fig. 1 shows the XRD patterns of α -Fe₂O₃ nanoparticle composites with NiO, TiO₂, MnO₂ and Bi₂O₃. The peaks appearing in the XRD pattern are indexed to the hexagonal structure (space group: $R\overline{3}c$) of α -Fe₂O₃ and they are consistent with the JCPDS No: 33-0664. Inclusion of other materials to the host may influence the microstructure like crystallite size, strain, texture etc. In a recent study, we have shown that the crystallite size and strain of NiO nanoparticles was influenced significantly by making a nanocomposite with CuO [15]. It is noticed from the XRD pattern that the additions of different materials influence the ratio of integrated intensities of (104) to (110) peaks (I_{104}/I_{110}) of the α -Fe₂O₃ nanoparticles. Fig. 2 shows the evolution of I_{104}/I_{110} of α -Fe₂O₃ nanoparticles composites with different materials. This ratio is higher than unity for all the composite samples which corresponds well to the standard XRD pattern of hematite [16]. The ratio of I_{104}/I_{110} in all composite samples except for α -Fe₂O₃/Bi₂O₃ is higher than in the pure α - Fe_2O_3 nanoparticles. Higher I_{104}/I_{110} ratio for the composites than for pure α -Fe₂O₃ nanoparticles indicates the favourable growth direction of the nanoparticles along [104] in the composite [17]. Since the integrated intensities of (104) to (110)peaks of α -Fe₂O₃ nanoparticles were influenced significantly by the additions of different materials, we therefore estimated the average crystallite size (D) and the strain (ε) of the α -Fe₂O₃ nanoparticle composites with other materials from the full width at half maximum (FWHM) of the first two major XRD peaks i.e. (104) to (110) peaks using the following equations [18]:

$$D = \frac{0.94\lambda}{\beta\cos\theta} \tag{1}$$

and

$$\varepsilon = \frac{\beta \cos \theta}{4} \tag{2}$$

where β is the FWHM, θ is the Bragg angle and λ is the wavelength of Cu K α radiation. The variation of crystallite size and strain for α -Fe₂O₃ nanoparticle composites with different materials are given in Table 1. Crystallite size and strain for all the samples estimated either along [104] or [110] follow an opposite trend. Similar behaviour has been reported for pure α -Fe₂O₃ nanoparticles annealed at different temperatures [14]. Despite the lack of full understanding it can be said at this point that the microstructure of parent α -Fe₂O₃ nanoparticles is influenced by the additions of different materials.

Optical band gaps of α -Fe₂O₃ nanoparticle composites with different materials were estimated by using UV-Vis absorption spectroscopy. Fig. 3

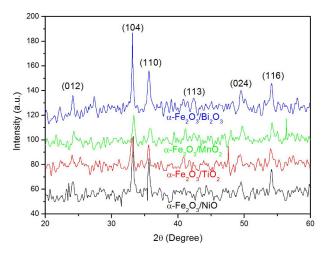


Fig. 1. XRD pattern of α -Fe₂O₃ nanoparticle composites with NiO, TiO₂, MnO₂ and Bi₂O₃.

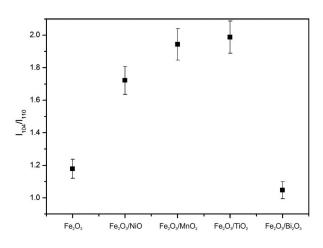


Fig. 2. Variation of I_{104}/I_{110} of α -Fe₂O₃ nanoparticle composites with different materials.

Table 1. Variation of crystallite size and strain of α -Fe₂O₃ nanoparticle composites with different materials.

Sample	Crystallite Size (nm)		Strain (%)	
	along (104)	along (110)	along (104)	along (110)
Fe ₂ O ₃	34.18	33.24	6.1	6.24
Fe ₂ O ₃ /NiO	29.27	36.32	7.1	5.7
Fe ₂ O ₃ /MnO ₂	38.32	33.35	5.4	6.2
Fe ₂ O ₃ /TiO ₂	31.02	45.02	6.7	4.6
Fe ₂ O ₃ /Bi ₂ O ₃	42.89	25.86	5.0	8.0

shows the variation of absorption coefficient, α of α -Fe₂O₃ nanoparticle composites as a function of photon energy. The absorption coefficient for all samples decreased with decreasing energy due to nanocrystalline nature of the material [19]. The optical band gap was extracted from the absorption coefficient according to the following relation [20]:

$$\alpha = \frac{B(h\nu - E_g)^n}{h\nu} \tag{3}$$

where hv is the incident photon energy, α is the absorption coefficient, B is a material dependent constant and E_g is the optical band gap. The value of E_g can be determined by extrapolating the lin-ear portion of the $(\alpha hv)^{1/n}$ vs. hv plot to $\alpha =$ 0. In our earlier work, we stated that α -Fe₂O₃ nanoparticles exhibit both direct and indirect band gap [14]. In the present case, we have investigated the occurrence of both direct and indirect transitions by plotting $(\alpha h v)^{\frac{1}{n}}$ vs. hv with n = 2 (Fig. 4) and $\frac{1}{2}$ (Fig. 5), respectively for all composite samples. The value of direct band gap nanoparticle decreased from ~ 2.67 eV for the pure α -Fe₂O₃ [14] to ~2.5 eV for the α -Fe₂O₃ nanoparticle composites with different materials like NiO, TiO₂, MnO₂ and Bi_2O_3 (Table 2). However, the value of indirect band gap increased for all composite samples except for α -Fe₂O₃/Bi₂O₃. Comparing the crystallite size along [110] (Table 1) with the indirect band gap (Table 2) of a corresponding composite sample, we noticed that the crystallite size along [110] and indirect band gap follow the same trend in the composite sample.

Table 2. Variation of direct and indirect band gap of α -Fe₂O₃ nanoparticle composites with different materials.

Sample	E_g (direct) (eV)	E_g (indirect) (eV)
Fe ₂ O ₃	2.67	1.6
Fe ₂ O ₃ /NiO	2.55	1.82
Fe ₂ O ₃ /MnO ₂	2.53	1.68
Fe ₂ O ₃ /TiO ₂	2.53	1.91
Fe ₂ O ₃ /Bi ₂ O ₃	2.51	1.56

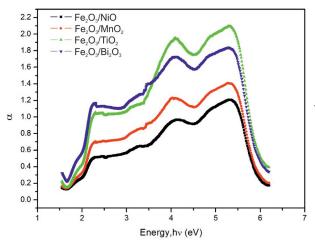


Fig. 3. Variation of absorption coefficient, α vs. photon energy, hv for α -Fe₂O₃ nanoparticle composites with NiO, TiO₂, MnO₂ and Bi₂O₃.

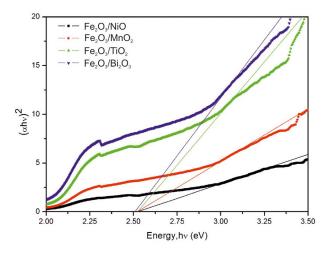


Fig. 4. Variation of $(\alpha hv)^2$ vs. photon energy, hv for α -Fe₂O₃ nanoparticle composites with NiO, TiO₂, MnO₂ and Bi₂O₃.

4. Conclusions

Hematite (α -Fe₂O₃) nanoparticle composites with different materials (NiO, TiO₂, MnO₂ and Bi₂O₃) were synthesized. Effects of different materials on the microstructure and optical band gap of α -Fe₂O₃ nanoparticles were studied. The presence of different materials in the composite sample influenced the crystallite size and strain of the pure α -Fe₂O₃ nanoparticles significantly. The value of direct band gap decreased from ~2.67 for pure α -Fe₂O₃ nanoparticle to ~2.5 eV for α -Fe₂O₃ com-

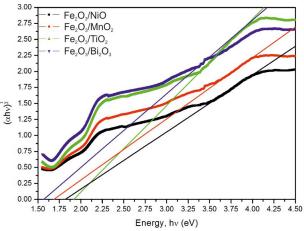


Fig. 5. Variation of $(\alpha h v)^{\frac{1}{2}}$ vs. photon energy, hv for α -Fe₂O₃ nanoparticle composites with NiO, TiO₂, MnO₂ and Bi₂O₃.

posites with different materials. The value of indirect band gap, on the other hand, increased for all composite samples except for α -Fe₂O₃/Bi₂O₃.

Acknowledgements

The author thanks to Prof. N.C. Mishra, Utkal University, Bhubaneswar for his encouragement and also for providing laboratory facility to carry out this work. DST, Govt. of India is acknowledged for proving XRD facility at Utkal University, Bhubaneswar under FIST programme.

References

- BENTIVEGNA F., FERRE J., NYVLT M., JAMET J.P., IMHOFF D., CANVA M., BRUN A., VEILLET P., VIS-NOVSKY S., CHAPUT F., BOILOT J.P., *J. Appl. Phys.*, 83 (1998), 7776.
- [2] VAYSSIERES L., BEERMANN N., LINDQUIST S.-E., HAGFELDT A., Chem. Mater., 13 (2001), 233.
- [3] HASSAN M.F., RAHMAN M.M., GUO Z.P., CHEN Z.X., LIU H.K., *Electrochim. Acta*, 55 (2010), 5006.
- [4] CHENG F., HUANG K., LIU S., LIU J., DENG R., Electrochim. Acta, 56 (2011), 5593.
- [5] SARKAR D., KHAN G.G., SINGH A.K., MANDAL K., J. Phys. Chem. C, 117 (30) (2013), 15523.
- [6] TANG H., ZHANG D., TANG G., JI X., LI W., LI C., YANG X., Ceram. Int., 39 (8) (2013), 8633.
- [7] PRADHAN G.K., PADHI D.K., PARIDA K.M., ACS Appl. Mater. Interfaces, 5 (18) (2013), 9101.
- [8] LI H., ZHAO Q., LI X., ZHU Z., TADE M., LIU S., J. Nanopart. Res., 15 (2013), 1670.
- [9] MCDONALD K.J., CHOI K.-S., Chem. Mater., 23 (21) (2011), 4863.
- [10] ZHU X., ZHU Y., MURALI S., STOLLER M.D., RUOFF R.S, ACS Nano, 5 (4) (2011), 3333.

- TIAN X., J. Mater. Chem. A, 1 (2013), 8547.
- HUANG S., GAN L., Appl. Surf. Sci., 266 (2013), 148.
- [13] CHENG F., HUANG K., LIU S., LIU J., DENG R., Electrochim. Acta, 56 (2011), 5593.
- [14] MALLICK P., DASH B.N., J. Nanosci. Nanotechnol., 3 (2013), 130.
- [15] MALLICK P., SAHOO C.S., J. Nanosci. Nanotechnol., 3 (2013), 52.
- [16] FOUDA M.F.R., ELKHOLY M.B., MOSTAFA S.A., HUSSIEN A.I., WAHBA M.A., EL-SHAHAT M.F., Adv. Mat. Lett., 4 (5) (2013), 347.

- [11] ZHANG H., XIE A., WANG C., WANG H., SHEN Y., [17] ZHONG M., LIUY Z., ZHONG X., YU H., ZENG D., J. Mater. Sci. Technol., 27 (11) (2011), 985.
- [12] XIAO W., WANG Z., GUO H., LI X., WANG J., [18] GORDILLO G., FLOREZ J.M., HERNANDEZ L.C., Sol. Energ. Mat. Sol. C., 37 (1995), 273.
 - [19] CHENG K., HE Y.P., MIAO Y.M., ZOU B.S., WANG Y.G., WANG T.H., ZHANG X.T., DU Z.L., J. Phys. Chem. B, 110 (2006), 7259.
 - [20] MOTT N.F., DAVIS E.A., Electronic Processes in Non-Crystalline Materials, Clarendon-Press, Oxford, 1971.

Received 2013-12-17 Accepted 2014-02-05