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Auxetic materials are endowed with a behavior that contradicts common sense, when subjected to an axial tensile load they
increase their transverse dimension. In case of a compression load, they reduce their transverse dimension. Consequently, these
materials have a negative Poisson’s ratio in such direction. This paper reviews research related to these materials. It presents
the theories that explain their deformation behavior and reveals the important role represented by the internal structure. Their
mechanical properties are explored and some potential applications for these materials are shown.
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1. Introduction
The Poisson’s ratio of a material is a dimen-

sionless constant that depends on the direction of
an applied load, and describes the ratio of nega-
tive transverse strain to the longitudinal strain of
a body submitted to a tensile load [1]. It provides
a universal way to compare the structural perfor-
mance of real homogeneous and non-homogeneous
materials [2]. This elastic constant was implicitly
assumed to be positive [3], as common sense dic-
tated that no isotropic material in nature had a
value of Poisson’s ratio less than zero [4]. However,
there are materials that present an inverse behavior.
These materials expand their transverse dimension
when submitted to an axial tensile strength and de-
crease it when compressed [5]. This way, they have
a negative Poisson’s ratio. The materials that re-
veal this behavior have been called anti-rubber [6]
and dilational materials [7], but it was Ken Evans
who coined the currently accepted term: “auxet-
ics” [8]. This name, derived from the Greek word
auxetikos (αυχητικoς ), means “that which tends
to increase” [9].

This kind of behavior does not contradict the
classical theory of elasticity [10, 11]. In the theory,
for isotropic 3D materials the Poisson’s ratio can
assume values between −1 and 0.5 [12] while for
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isotropic 2D materials it can assume values from
−1 to 1 [10]. The violation of these limits gives
rise to instability [13].

In isotropic systems, the Poisson’s ratio is in-
dependent of the direction, but in the case of
anisotropic materials the determination of this ratio
depends on the direction of the stretch [14] and the
other transverse directions [15]. There are materi-
als that reveal an auxetic behavior in some direc-
tions and non-auxetic behavior in the others [16]
(for example in α-Cristobalite [17]). These kinds
of materials are known as partial auxetics [18, 19].
Contradicting common sense, partial auxetics are
quite common, as 69 % of cubic elemental met-
als present auxetic behavior in at least one direc-
tion [20]. This interaction between the different di-
rections of deformations may generate interesting
values of Poisson’s ratio that exceed largely the
presented isotropic values [21, 22] for orthotropic
and anisotropic materials [23].

Even though the existence of auxetic materials
has been admitted for more than 150 years [24],
only a few examples have been found in nature. In
1882 the case of iron pyrite monocrystals was re-
ported by experiments on the twisting and bending
of mineral rods [25]. This was the first study that
proved the existence of this kind of material in na-
ture. It was estimated that its Poisson’s ratio was
about −1/7 [26].
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Since then, other cases, such as polymorphic sil-
icones [27], zeolites [28] and silicates [29] have
been considered. Examples of auxetic behavior
in biological tissues were also found. There are
some classical examples such as cat skin [30],
cow teat skin [31] and cancellous bone [32]. Ad-
ditional studies suggest that inorganic and biolog-
ical fibrous materials in general present auxetic
behavior [33].

Due to the shortage of auxetics in nature and the
difficulty in attributing them a specific application,
there was an effort to synthesize them [34]. This
objective was completed for the first time in 1987,
by manufacturing the first auxetic foam [35]. This
was possible by working out the material internal
structure, considering the way that it deforms when
subjected to a load [36].

2. Structures
The approach to the manufacturing of auxetic

materials, considering not only the base material,
but the internal structure and deformation mech-
anism [37], allowed the expansion of the scale in
which this behavior occurs. The control of the ma-
terial structure made possible to tailor the mate-
rial properties [38]. This way, it became possible
to elaborate auxetic macrostructures [39].

Using these structural models, many theories
have been developed to explain the behavior of
these materials.

At this moment, there are some accepted
structural deformation models, like reentrant
structures [40, 41], the rotating rigid and
semi-rigid deformation model [42] and chiral
structures [43–47].

Reentrant structures are formed by hexagonal
face cells, which have the edges protruding out-
wardly. These kinds of structures are represented
in Fig. 1.

In the case of a uniaxial tensile load, the reen-
trant edges are subjected to bending and pulling
simultaneously [49]. The consequence of this de-
formation is the simultaneous expansion of the cell
faces, increasing cellular volume. As a result, the
dimensions of the cell increase with the tensile de-

Fig. 1. A conventional cell (a) and an ideal auxetic cell
(b) [48].

formation and the Poisson’s ratio of the structure is
negative.

In Fig. 2, a two-dimensional reentrant auxetic
cell subjected to a tensile load is presented. As can
be seen, the cell ribs tend to open, forcing the in-
crease of the cell’s area. This confirms the auxetic
behavior of these structures.

Fig. 2. Illustration of auxetic behavior on reentrant
structures [49].

However, the auxetic behavior of these struc-
tures is more complex than the initial geometri-
cal models predicted. It is known that the negative
Poisson’s ratio of these structures depends not only
on the reentrant geometry, but also on the simul-
taneous flexure, hinging and stretching of the cell
walls [50].

The rigid and semi-rigid rotation model is com-
posed of a system of rigid geometry, connected by
semi-rigid hinges in its corners. The layout of these
structures is made in such way that a tensile defor-
mation generates a bidirectional expansion [49], as
shown in Fig. 3. Being subjected, for example to a
tensile load, the hinges in the corners rotate, forc-
ing the structure to unfold on itself.
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Fig. 3. Deformation behavior in rigid and semi-rigid ro-
tating units [51].

This kind of internal structure can be obtained
in numerous geometries, including rectangles [42],
squares [52, 53], triangles [36, 51], and others [23,
37]. In Fig. 4 some examples of rigid units models
that exhibit auxetic behavior are shown.

Fig. 4. Square shaped (a) and triangular (b) rigid unit
models [36, 52].

The referred examples concern two-
dimensional structures of rigid rotating units,
however, recent studies demonstrate some attempts
to transform them into three-dimensional struc-
tures, such as the one represented in Fig. 5 [54].

Fig. 5. Three-dimensional rotating cube structure [54].

The main characteristics of chiral structures is
that they do not have a symmetric reflection, only
rotational reflection [55]. Fundamentally, they are
composed of a central node, connected by ribs,
whose geometry can vary [49]. These two elements
are joined by an almost tangential contact of the rib
with the external face of the node. These structures
are represented on a two-dimensional plane and are
isotropic, (see Fig. 6). Their Poisson’s ratio is close
to −1 [56].

Due to their geometry, when chiral structures
are submitted to stress, they have a particular defor-
mation behavior. Applying a compressive or tensile
load, each one of the individual cells suffers a tor-
sion effect. In this way, the central node of every
cell will rotate [55]. This rotation makes the cells
twist and untwist, generating a contraction or ex-
pansion behavior in the whole structure. In Fig. 7,
a chiral structure submitted to a uniaxial compres-
sive load is presented. Considering the generated
deformation, its auxetic behavior can be confirmed.
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Fig. 6. Chiral structure (a) [56] and an individual chiral
cell (b) [57].

Fig. 7. Confirmation of auxetic behavior on a chiral
structure [58].

3. Properties
Auxetic materials are characterized by a pecu-

liar behavior and, as a consequence, they have pe-
culiar and rare mechanical properties [59]. Explor-
ing these materials, one can find enhanced proper-
ties [60] that contradict common sense, when com-
pared to the characteristics of so called “regular”
materials. Some of these properties are presented
in the following sections.

3.1. Resistance to indentation

When a non-auxetic material is subjected to in-
dentation, the load applied by the indentor locally
compresses the material. To compensate this lo-
calized pressure, the material is spreading in the
direction perpendicular to the applied load [61]
(Fig. 8a).

However, when an indentation occurs in an
isotropic auxetic material, a local contraction is ob-
served. There is a flow of material that accumu-
lates under the indentor (Fig. 8b), and an area of
denser material with higher resistance to inden-
tation is created [9]. In this way, auxetic materi-
als have an improved indentation resistance, when
compared to conventional materials [62, 63].

Fig. 8. Indentation behavior in non-auxetix (a) and aux-
etic (b) materials [64].

The increase in indentation resistance can be
justified by the theory of elasticity. The indenta-
tion resistance is associated to the material hard-
ness (H). This property is correlated to the Pois-
son’s ratio by equation 1 [65]:

Hα

[
E

(1−ν2)

]γ

(1)
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where E is the Young’s modulus, ν is the Poisson’s
ratio of the base materials and γ is the constant
that assumes the value 1 or 2/3 in the case of uni-
form pressure distribution or hertzian indentation,
respectively.

Analyzing equation 1, it can be inferred that for
3D isotropic materials, when the Poisson’s ratio de-
creases to the extreme values near−1, the hardness
of the material tends to infinity [66]. As the up-
per limit of Poisson’s ratio for 3D isotropic solids
is 0.5, the observed values are considerably lower.
However, the upper limit of the Poisson’s ratio for
2D isotropic systems is 1 [67, 68]. Thus, the mate-
rials with such positive Poisson’s ratio values can
also have infinite hardness values.

3.2. Shear resistance
For similar situations, auxetic materials are

more resistant to shear forces, than “regular” ma-
terials [65]. The classical theory of elasticity for
3D isotropic solids implies that the elastic behavior
of a body can be described by two of four con-
stants: the Young’s modulus (E), the shear modulus
(G), the bulk modulus (K) and the Poisson’s ratio
(ν) [69]. In 3D, the relationship between these con-
stants is given by equations 2 and 3 [70]:

G =
3K(1−2ν)

2(1 + ν)
(2)

G =
E

2(1 + ν)
(3)

Analyzing the presented equations, it can be
easily observed that when the Poisson’s ratio de-
creases, the value of the shear modulus and conse-
quently the shear resistance increases.

In Fig. 9, the bulk and shear moduli of isotropic
solids are graphically correlated with the Poisson’s
ratio. It can be observed that for stable uncon-
strained solids, the shear modulus must be posi-
tive [71]. This implies that the Poisson’s ratio has
values between −1 and 0.5, which is the isotropic
solid limit. This relationship causes that at the ex-
treme negative values of Poisson’s ratio the shear
modulus tends to infinity.

Fig. 9. Correlation of the bulk and shear moduli with
the Poisson’s ratio and stability [72].

3.3. Fracture resistance
Materials that possess a negative Poisson’s ratio

have a better resistance to fracture than “regular”
materials [73, 74]. They also have low crack propa-
gation [75] and more energy is necessary to expand
them than in case of “regular” materials [76]. Thus,
these kinds of materials have a fragile fracture.

In his work on the crack growth, Maiti demon-
strated that the stress intensity factor for con-
ventional foams (K∗IC) is proportional to the nor-
malized density and can be described by equa-
tion 4 [77]:

K∗IC
σ f
√

πl
= 0.19

(
ρ∗
ρs

)
(4)

where σ f is the fracture stress of the cell rib, l is
the rib length, ρ* is the foam density and ρs is the
density of the foam based material.

Later, the work by Choi and Lakes showed that
in the case of reentrant foams, Eq. 4 was not ap-
plicable and that the stress intensity factor for this
kind of foams (Kr

IC) could be expressed by equa-
tion 5 [73]:

Kr
IC

σ f
√

πl
= 0.1

√
1 + sin(π

2 −ϕ)

1 + cos(2ϕ)

ρ∗
ρs

(5)

where ϕ is the rib angle of the reentrant cell, pre-
sented in Fig. 10.
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Fig. 10. Schematic cross-section view of a reentrant
cell [73].

In the same work Choi observed that for the
analyzed reentrant foam, the relationship between
stress intensity factors could be established accord-
ing to equation 6 [9]:

Kr
IC

K∗IC
= 0.53

√
1 + sin(π

2 −ϕ)

1 + cos(2ϕ)
(6)

Experimental results also showed that for
higher values of volumetric compression, reentrant
foams revealed an increased fracture toughness, as
demonstrated in Fig. 11.

Fig. 11. Experimental normalized fracture toughness.
Open symbols: conventional foam and solid
symbols: reentrant foam [73].

This phenomenon can be explained by the ba-
sic definition of auxetic materials. When these ma-
terials are submitted to a tensile strength, they in-
crease their dimensions. This dimensional growth

is verified macroscopically. However, the visual-
ized growth is only the result of the dimensional
increase of each individual auxetic cell. This way,
whenever a crack is formed, the expansion of the
cell will tend to close it.

3.4. Acoustic absorption
Auxetic foams have a superior capacity of

acoustic absorption than conventional foams [78,
79]. The auxetic structure plays a relevant role in
the attenuation of acoustic vibrations. Their per-
formance is more relevant in frequencies under
1500 [Hz] [80].

An example of the magnitude of this effect is
the study of ultra-high-molecular weight polyethy-
lene. This material presents an ultrasonic attenua-
tion value 1.5 times higher than a sintered foam and
3 times higher than a conventional foam, composed
of the same base material [81].

Another example of the superior performance
of auxetic materials was observed by Ruzzene
while studying the attenuation of elastic waves over
certain frequency bands (stop bands) and the direc-
tional characteristics in hexagonal honeycombs and
auxetic (bowtie) lattices [82]. The studied periodic
structures are presented in Fig. 12.

Fig. 12. Hexagonal honeycombs (a) and auxetic
(bowtie) lattice (b) unit cells [82].

Numerical results demonstrated that for a rib
angle θ = 30°(θ = −30°, for auxetic cells), the
auxetic structures showed a superior wave attenua-
tion in the great majority of that structures orienta-
tion angles (φ ) and wave frequencies (ω), as shown
in Fig. 13.

3.5. Synclastic behavior
Synclastic behavior is a body’s ability to deform

in a shape of a dome when it is bent [83].
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Fig. 13. Band gap representation in hexagonal honey-
combs (a) and auxetic (bowtie) lattices (b) [82].

Reviewing the basic concepts of mechanics of
materials, when a body is bent, it is submitted to
tensile and compression stresses. Consider the con-
cavity formed by the bending deformation. Focus-
ing on the case of auxetic materials, there is an ex-
pansion and a contraction of the material in the
exterior and the interior of the material, respec-
tively. While bending the auxetic material, a dome
is formed [84], as a result of expansion of the pulled
material and the contraction of the compressed por-
tion. This behavior is shown in Fig. 14.

Fig. 14. Anticlastic hexagonal honeycomb (a) and syn-
clastic auxetic reentrant structure (b) [85].

The ability to form the doubly curved shapes is
useful [86], e.g. because it provides a way to fab-
ricate this kind of complex structures without the
necessity of using damaging techniques nor addi-
tional machining [87], which are normally used to
obtain such shapes [61].

3.6. Variable permeability
Due to the expansion and contraction behavior,

namely in auxetic foams, it can be said that these
structures have variable permeability.

In auxetic foams, the variation of the structure
dimensions is the reflection of the change of the di-
mensions of each individual cell. Consequently, it

can be seen that each cell of the structure is nothing
but a pore that can be opened and closed [49] in the
more convenient way. This characteristics can be
observed in Fig. 15.

Fig. 15. Variable permeability [36].

3.7. Shape memory auxetics
Shape memory is the ability of a material sub-

jected to a plastic or semi-plastic deformation
to remember and return to its initial shape and
size, when submitted to a specific thermal stimula-
tion [88, 89]. Studies in this field show that it is pos-
sible to obtain auxetic foams that can be reverted
to conventional foams several times without loss
of mechanical characteristics [90, 91]. This prop-
erty is extremely useful in situations that require
auxetic and non-auxetic variable mechanical prop-
erties [92], where the variation of temperature is
involved [93].

3.8. Other auxetic properties
The improved fracture toughness and hardness

of auxetic materials suggest that these materials can
have better tribological attributes than conventional
materials. This can be justified by the properties
that reduce the abrasive wear in auxetic materials.

This possibility was confirmed in the work by
Uzun who showed that auxetic based weft knit-
ted fabric had an increase of 15 – 35 % of abra-
sive wear resistance when compared to conven-
tional polypropylene knitted fabrics [94].

Another interesting property of auxetics is the
dielectric behavior in chiral honeycombs. It was
suggested by Kopyt that the panels composed of
hexa-chiral honeycombs may act like a homoge-
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nous medium, despite their complex and heteroge-
neous geometry [95].

4. Applications
Considering the properties that are character-

istic of these materials thanks to their negative
Poisson’s ratio, there were created conditions for
development of new potential applications and
mechanisms that otherwise would be impossible to
obtain [96].

One possible application of these materials is
the manufacturing of piezoelectric sensors [97].
The low bulk modulus [65] and the capacity to
obtain an auxetic matrix that can follow the defor-
mation of the piezoelectric rods [64], makes this
sensors more sensible to the variation of pressure.
This behavior can be observed in Fig. 16.

Fig. 16. Auxetic piezoelectric sensor [64].

As it was mentioned earlier, one of the most
desirable properties of these materials is the vari-
able permeability. This property can be used in
manufacturing of intelligent filters, which can be
designed with different sizes and particular ge-
ometries to control the passage pressure while
filtering [98].

An interesting field of application for these ma-
terials is biomedical engineering. The evolution
of these materials will allow the manufacturing
of blood vessels that expand their walls when the
blood is pumped [99] or the development of new
surgical tools and mechanisms. Consider, for ex-
ample Fig. 17, where a possible blood vessel dilator
is represented.

Taking into account that the most obvious char-
acteristics of these materials is their expansion
when submitted to a tensile load, there can be found
common applications that use this as an advantage.
One studied application is the use of auxetic fas-
teners. These fasteners contract when inserted and

Fig. 17. Blood vessel dilator [64].

expand on an attempt of removal. In this way, a big-
ger force is required to remove them [100].

Fig. 18. Behavior of auxetic fastener [100].

It can be observed in Fig. 18 that the expansion
originating during the removal required bigger load
than for the fastener insertion.

Another example of the application of aux-
etic materials is the manufacturing of a chiral-
based honeycomb deployable antenna for deep-
space missions, using the shape-memory proper-
ties [89]. This antenna is folded while transported,
as there is a very limited area for rocket launchers.
Once in space, the shape memory structure uses the
thermal energy of the sun to unfold to its original
size, as shown in Fig. 19.

Auxetic textile structures are also a fast grow-
ing field. Their development should lead to the fab-
rication of materials with improved energy absorp-
tion, high volume change, wear resistance and dra-
peability [101]. Some of these characteristics can
be used in the aerospace, automotive and military
sector [102].
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Fig. 19. Folded (a) and unfolded (b) auxetic cellular an-
tenna [89].

The production of this kind of textiles can be
executed by two basic methods. The first one is the
use of auxetic based fibers directly in the knitting
and weaving of the textiles [103]. The other one
is the production of auxetic textiles using conven-
tional fibers weaved or knitted into a structure that
is auxetic by itself [101, 104].

The use of auxetic textiles can already be found
commercially, for example in applications that use
GoreTex and polytetrafluorethylene [66].

One of the most promising fields is the devel-
opment of auxetic materials at a nanoscale, for ex-
ample in the applications with carbon nanotubes.
These kinds of materials are basically made of
the molecules composed of a monolayer of carbon
atoms arranged in a cylindrical lattice [105]. One of
the applications of this nanostructured auxetics can
be the molecular variable permeability filters [106].

The simulations that represent these nanostruc-
tures suggest that under certain geometric and force
conditions, when the stretching deformation in the
cell walls dominates, it is possible to obtain nega-
tive values of Poisson’s ratio [105].

5. Conclusions
As a relatively new class of materials, auxetics

are generating a progressive interest in the scien-
tific community. Their counter-intuitive behavior,
allowed by the deformation mechanism of the in-
ternal structure, gives new perspectives in terms of
possible applications of these materials.

Although this kind of behavior is not rare in
anisotropic materials (partial auxetics), there are

real advantages in the continuous development of
isotropic materials with negative Poisson’s ratio
(auxetics). This objective is gradually achieved by
the constant study of the theoretical structures, like
reentrant, rigid and semi-rigid as well as chiral
models.

The unique combination of mechanical char-
acteristics, like their superior resistance to inden-
tation, shear, fracture and wear, make them very
desirable at a structural level. On the other hand,
the advantages generated by their variable perme-
ability, acoustic absorption, synclastic behavior and
their evolution in the shape memory field make
them very promising as technological materials.

The continuous study of these materials at a
molecular level, for example in a nano scale may
provide the means to obtain new homogenous aux-
etic materials that combine the advantages of both
regular and auxetic materials.

References
[1] ROH J.H., GILLER C.B., MOTT P.H., ROLAND

C.M., AIP Advances, 3 (2013), 042126.
[2] GREAVES G.N., GREER A.L., LAKES R.S., ROUXEL

T., Nat. Mater., 10 (2011), 823.
[3] STREK T., MARUSZEWSKI B., NAROJCZYK J.W.,

WOJCIECHOWSKI K.W., J. Non-Cryst. Solids, 354
(2008), 4475.

[4] WOJCIECHOWSKI K.W., NOVIKOV V.V., Task Quar-
terly, 5 (2001), 5.

[5] GERCEK H., Int. J. Rock Mech. Min., 44 (2007), 1.
[6] GLIECK J., The New York Times, 14th April 1987.
[7] MILTON G.W., J. Mech. Phys. Solids, 40 (1992), 1105.
[8] EVANS K.E., NKANSAH M.A., HUTCHINSON I.J.,

ROGERS S.C., Nature, 353 (1991), 124.
[9] PRAWOTO Y., Comp. Mater. Sci., 58 (2012), 140.

[10] WOJCIECHOWSKI, K.W., J. Phys. Soc. Jpn., 72
(2003), 1819.

[11] KOCER C., MCKENZIE D.R., BILEK M.M., Mater.
Sci. Eng. A – Struct., 505 (2009), 111.

[12] MOTT P.H., ROLAND C.M., Phys. Scripta, 87 (2013),
055404.

[13] LAKES R.S., LEE T., BERSIE A., WANG Y.C., Na-
ture, 410 (2001), 565.

[14] TOKMAKOVA S.P., Phys. Stat. Sol. B, 242 (2005), 721.
[15] NAROJCZYK J.W., WOJCIECHOWSKI K.W., Phys.

Stat. Sol. B, 245 (2008), 606.
[16] BRANKA A.C., HEYES D.M., MACKOWIAK SZ.,

PIEPRZYK S., WOJCIECHOWSKI K.W., Phys. Stat.
Sol. B, 249 (2012), 1373.

[17] KIMIKUZA H., OGATA S., SHIBUTANI Y., Mat. T.
JIM, 46 (2005), 1161.



570 V. H. Carneiro, J. Meireles, H. Puga

[18] NAROJCZYK J.W., WOJCIECHOWSKI K.W., J. Non-
Cryst. Solids, 356 (2010), 2026.

[19] BRANKA A.C., HEYES D.M., MACKOWIAK SZ.,
PIEPRZYK S., WOJCIECHOWSKI K.W., Phys. Stat.
Sol. B, 248 (2011), 96.

[20] BAUGHMAN R.H., SHACKLETTE J.M., ZAKHIDOV
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