Controlled mechanochemical synthesis and properties of a selected perovskite-type electroceramics

Open access

Abstract

This paper presents mechanochemical synthesis as an alternative to the traditional high-temperature synthesis of advanced electrotechnical ceramic materials with a perovskite-type structure. The reaction conditions for high-energy ball milling, e.g. reaction environment, energy of milling and additives to BaTiO3 such as metallic iron or zirconia from the exfoliation of the milling vessel and grinding media are discussed.

[1] Boldyrev V.V., Tkáčová K., J. Mater. Synth. Process., 8(3–4) (2000), 121. http://dx.doi.org/10.1023/A:1011347706721

[2] Gilman J.J., Science, 39 (1996), 65. http://dx.doi.org/10.1126/science.274.5284.65

[3] Suryanarayana C., Prog. Mater. Sci., 46 (2001), 1. http://dx.doi.org/10.1016/S0079-6425(99)00010-9

[4] Wieczorek-Ciurowa K., Mechanochemical Synthesis of Metallic-Ceramic Composite Powders, in: M. Sopicka-Lizer (Eds.), High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, Woodhead Publishing Ltd., 2010, p. 193. http://dx.doi.org/10.1533/9781845699444.2.193

[5] Takacs L., Prog. Mater Sci., 47 (2002), 355. http://dx.doi.org/10.1016/S0079-6425(01)00002-0

[6] Avvakumov E., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, Boston, 2001.

[7] Wieczorek-ciurowa K., Rakoczy J., Błońskatabero A., Filipek E., Nizioł J., Dulian P., Catal. Today, 176 (2011), 314. http://dx.doi.org/10.1016/j.cattod.2010.12.007

[8] Zhang W., Lu L., Cheng Y., Xu N., Pan L., Lin Q., Wang Y., Green Chem., 13 (2011), 2701. http://dx.doi.org/10.1039/c1gc15557a

[9] Wieczorek-Ciurowa K., Dulian P., Nosal A., Domagała J., J. Therm. Anal. Calorim., 101 (2010), 471. http://dx.doi.org/10.1007/s10973-010-0802-0

[10] Wieczorek-Ciurowa K., Dulian P., Bąk W., Kajtoch C., Przem. Chem., 90 (2011), 1400. (in Polish).

[11] Zhang Q., Saito F., Adv. Powder Technol., 23 (2012), 523. http://dx.doi.org/10.1016/j.apt.2012.05.002

[12] Wieczorek-Ciurowa K., Gamrat K., J. Therm. Anal. Calorim., 88 (2007), 213. http://dx.doi.org/10.1007/s10973-006-8098-9

[13] Garay A.L., Pichon A., James S.L., Cryst. Eng. Comm., 8 (2007), 846.

[14] Carlier L., Baron M., Chamayou A., Couarraze G., Tetrahedron Lett., 52 (2011), 4686. http://dx.doi.org/10.1016/j.tetlet.2011.07.003

[15] Johnson C.J., Appl. Phys. Lett., 7 (1965), 221. http://dx.doi.org/10.1063/1.1754387

[16] George C.N. et al., J. Mater. Charact., 60 (2009), 322. http://dx.doi.org/10.1016/j.matchar.2008.09.012

[17] Buscaglia V. et al., Powder Technol., 148 (2004), 24. http://dx.doi.org/10.1016/j.powtec.2004.09.016

[18] Hennings D., Int. J. Hig Technol. Ceram., 3 (1987), 91. http://dx.doi.org/10.1016/0267-3762(87)90031-2

[19] Völtzke D., Abicht H.-P., J. Mater. Sci., 30 (1995), 4896. http://dx.doi.org/10.1007/BF01154501

[20] Lin T.-F., Lin J.-L., Hu C.-T., Lin I.-N., J. Mater. Sci., 26 (1991), 491. http://dx.doi.org/10.1007/BF00576548

[21] Kumar P., Singh S., Spah M., Juneja J.K., Prakash C., Raina K.K., J. Alloys Compd., 489 (2010), 59. http://dx.doi.org/10.1016/j.jallcom.2009.08.024

[22] Nath A.K., Medhi N., Mater. Lett., 73 (2012), 75. http://dx.doi.org/10.1016/j.matlet.2011.12.113

[23] Kinoshita K., Yamaji A., J. Appl. Phys., 47 (1976), 371. http://dx.doi.org/10.1063/1.322330

[24] Buscaglia V. et al., J. Eur. Ceram. Soc., 26 (2006), 2889. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.005

[25] Frey M.H., Payne D.A., Phys. Rev. B: Condens. Matter Mater. Phys., 54 (1996), 3158. http://dx.doi.org/10.1103/PhysRevB.54.3158

[26] Niepce J.C., Thomas G., Solid State Ionics, 43 (1990), 69. http://dx.doi.org/10.1016/0167-2738(90)90472-4

[27] Bhalla A.S., Guo R., Roy R., Mater. Res. Innovations, 4 (2000), 3. http://dx.doi.org/10.1007/s100190000062

[28] Jung W.S., Kim J.H., Kim H.T., Yoon D.H., Mater. Lett., 64 (2010), 170. http://dx.doi.org/10.1016/j.matlet.2009.10.035

[29] Tsuzuku K., Couzi M., J. Mater. Sci., 47 (2012), 4481. http://dx.doi.org/10.1007/s10853-012-6310-9

[30] Frey M.H., Payne D.A., Appl. Phys. Lett., 63 (1993), 2753. http://dx.doi.org/10.1063/1.110324

[31] Lei J.-X., Liu X.-L., Chen J.-F., Adv. Mater. Res., 11–12 (2006), 23. http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.23

[32] Testino A., Buscaglia V., Buscaglia M.T., Viviani M., Nanni P., Chem. Mater., 17 (2005), 5346. http://dx.doi.org/10.1021/cm051119f

[33] Xu H., Gao L., Mater. Lett., 57 (2002), 490. http://dx.doi.org/10.1016/S0167-577X(02)00817-0

[34] Wu D.H., Shi X.Y., Zhang H.J. S, Yadian Yu Shengguang/Piezoelectric and Acoustooptics, 31 (2009), 251.

[35] Kong L.B., Ma J., Huang H., Zhang R.F., Que W.X., J. Alloys Compd., 337 (2002), 226. http://dx.doi.org/10.1016/S0925-8388(01)01925-9

[36] Sundararajan T., Balasivanandha Prabu S., Manisha Vidyavathy S., Mater. Res. Bull., 47 (2012), 1448. http://dx.doi.org/10.1016/j.materresbull.2012.02.044

[37] Zazhigalov V.A., Sidorchuk V.V., Khalameida S.V., Kuznetsova L.S., Inorg. Mater., 44 (2008), 641. http://dx.doi.org/10.1134/S0020168508060174

[38] Gomez-Yańez C., Benitez C., Balmoriramirez H., Ceram. Int., 26 (2000), 271. http://dx.doi.org/10.1016/S0272-8842(99)00053-X

[39] Abe O., Suzuki Y., Mater. Sci. Forum, 225 (part 1) (1996), 563.

[40] Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A., J. Eur. Ceram. Soc., 25 (2005), 1985. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.003

[41] Brzozowski E., Castro M.S., Thermochim. Acta, 398 (2003), 123. http://dx.doi.org/10.1016/S0040-6031(02)00353-2

[42] Barin I., Knacke O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977. http://dx.doi.org/10.1007/978-3-662-02293-1

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 5
PDF Downloads 46 46 6