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Glycerol-assisted solution combustion synthesis
of improved LiMn,0,
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Spinel LiMn,O4 has been synthesized by a glycerol-assisted combustion synthesis method. The phase composition and
morphologies of the compound were ascertained by X-ray diffraction (XRD) and scanning electron microscope (SEM). The
electrochemical characterization was performed by using CR2032 coin-type cell. XRD analysis indicates that single phase
spinel LiMn,O4 with good crystallinity has been obtained as a result of 5 h treatment at 600 °C. SEM investigation indicates
that the average particle size of the sample is 200 nm. The initial discharge specific capacity of the LiMn;O, is 123 mAh/g
at a current density of 30 mA/g. When the current density increased to 300 mA/g, the LiMn;O4 offered a discharge specific
capacity of 86 mAh/g. Compared with the LiMn;O,4 prepared by a conventional solution combustion synthesis method at
the same temperature, the prepared LiMn, O, possesses higher purity, better crystallinity and more uniformly dispersed par-
ticles. Moreover, the initial discharge specific capacity, rate capability and cycling performance of the prepared LiMn;O4 are

significantly improved.
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1. Introduction

Spinel LiMn,O4 has been extensively studied
in electrochemical field due to its potential use
as a cathode material for lithium ion batteries. In
comparison with the conventional LiCoO, cathode
electrode, it is safer, cheaper, contains more com-
mon elements, and is environmentally friendly [1].
However, LiMn;Oy4 creates problems such as ca-
pacity fading and limited cyclability [2]. It has been
found that LiMn;O4 possessing single-phase, high
crystallinity as well as uniform and well-dispersed
particle morphology has better electrode proper-
ties [3, 4]. LiMn,O4 powders have been synthe-
sized by solid-state reaction method at high tem-
peratures of 700 — 900 °C. This method has several
disadvantages: inhomogeneity, irregular morphol-
ogy and large average particle size with a broad
particle size distribution, as well as poor control of
stoichiometry, high temperature and long synthesis
time [5, 6]. In order to solve such problems, sev-
eral soft-chemical methods have been widely intro-
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duced, such as sol-gel [7], freeze-drying [8] and the
Pechini process [9]. Homogeneous spinel materi-
als with small particle size can be synthesized by
these methods. However, the preparation process
is complicated and synthesis temperature is high
(>700 °C).

Solution combustion synthesis is a simple and
direct method to synthesize spinel LiMn,O4 [10,
11]. However, the purity and crystallinity of
the powders prepared by this method at low
temperature (<700 °C) is low, resulting in bad
electrochemical performance. In order to get sin-
gle phase LiMn,O4 with good crystallinity, high
temperature and long synthesis time are needed.
Yang et al. [12] and Lu et al. [13] reported that
they employed a very long firing process of more
than 10 h at the temperature >700 °C to get single
phase LiMn,Oy4. In addition, the conventional fuel
urea is not in line with environmental standards, be-
cause nitrogen oxides are released in the combus-
tion reaction.

In our previous works [14, 15], it was found that
impurity formation could be attributed to the high
combustion rate of the conventional solution syn-
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thesis method, and the combustion rate was influ-
enced significantly by the content of oxidizer (the
main oxidizer in the system is NOy). In this paper,
in order to improve the disadvantages of the con-
ventional solution combustion synthesis method,
the method has been modified as follows: 1) Ac-
etate salts have been used to substitute the ni-
trate ones partly, in order to decrease the com-
bustion rate by decreasing the content of oxidizer.
2) Glycerol has been used as a new fuel. The
structure, morphology and electrochemical perfor-
mance of the prepared LiMn;O4 have been investi-
gated in detail.

2. Experimental

2.1.

Firstly, 10 g raw materials of LiNOs (AR,
99 %), Mn(NOs3), (AR, 99 %), CH3COOLi (AR,
99 %) and (CH3COO),Mn (AR, 99 %) with the
mole ratio of 0.5:1:0.5:1 were dissolved in 5 ml
10 wt.% aqueous glycerol to obtain a solution.
Then, the solution was put into a muffle furnace
and was directly heated at 600 °C for 5 h. Af-
ter cooling down to room temperature naturally in
the muffle furnace, the product was obtained. As a
comparison, a LiMn;O4 powder was also synthe-
sized by the conventional solution combustion syn-
thesis [12] under the same temperature and time,
wherein the raw materials and fuel were LiNOj;
(AR, 99 %), Mn(NO3); (AR, 99 %) and urea. The
initial materials were dissolved in distilled water.

Preparation

2.2. Characterization

The phase composition and crystallinity of
the samples were ascertained by X-ray diffrac-
tion (XRD, D/max-rB, diffractometer with Cu—
Ko radiation, A = 1.5406 A) within scattering
angles of 10° and 70° in steps of 0.02°. The
morphologies of the samples were observed by
scanning electron microscope (SEM, XL30ESEM-
TMP, Philips). Thermal decomposition behavior of
the powders was examined by thermogravimetric
analysis (TGA) and differential thermal analysis
(DTA, Netzsch STA, Germany) at a heating rate of
10° /min under air.

2.3. Elctrochemical performance test

The electrochemical characterizations were
performed by using CR2032 coin-type cell.
For LiMn,Q4 electrode fabrication, the prepared
LiMn;0O4 powders were mixed with 10 wt.% of
carbon black and 10 wt.% of polyvinylidene fluo-
ride in N-methyl pyrrolidinone until slurry was ob-
tained. Then, the blended slurries were pasted onto
an aluminum current collector, and the electrode
was dried at 120 °C for 12 h in vacuum. The test
cell consisted of the LiMn,O4 electrode as cath-
ode electrode, lithium foil as anode electrode, a
porous polypropylene film as a separator and 1 M
LiPFg in EC/EMC/DMC (1:1:1 in volume) as a
electrolyte. The cells were assembled in an argon-
filled glove box and cycled at room temperature.
The electrochemical performances of the samples
were evaluated upon cycling in the 3.2 — 435V
versus Li/Li™T electrode.

3. Results and discussion

3.1.

The XRD patterns of the products obtained
by the conventional solution combustion (CC-
LiMn,04) and the glycerol-assisted solution com-
bustion synthesis method (GC-LiMn;O4) are
shown in Fig. 1(a) and Fig. 1(b). As shown in
Fig. 1(a), the main peaks of CC-LiMn,Q, corre-
spond to LiMn,04(JCPDS 35-0782). Some impu-
rities peaks are found in the sample, which corre-
spond to Mn,O3. For GC-LiMn;,04 in Fig. 1(b),
all the peaks are in good agreement with LiMn; Oy,
indicating that a single phase LiMn,O4is obtained.
The temperature and time needed to obtain a sin-
gle phase LiMn;O4 were only 600 °C and 5 h,
which were lower than these parameters for the
products prepared by the conventional solution
combustion synthesis method reported in litera-
ture [11-13]. Noticeably, there is a substantial in-
crease in the intensities from the peaks in Fig. 1(b)
in comparison to the peaks in Fig. 1(a). This in-
crease signifies a substantial increase in the crys-
tallinity of GC-LiMn,O4. Because the combus-
tion rate in the glycerol-assisted combustion sys-
tem was decelerated by decreasing the content of

Phase composition
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Fig. 1. XRD patterns of (a) CC-LiMn,04 and (b) GC-
LiMn;,0y.

oxidizer (NOj ), and glycerol was able to release
more heat than that of urea [16] in the combustion
system to accelerate the formation of LiMn; Oy, the
purity and crystallinity of GC-LiMn;0O4 could be
well improved.

3.2. Thermal characteristics and micro
morphology.

Fig. 2 shows the TG/DTA patterns of CC-
LiMn,04and GC-LiMn;O4. The weight change
has not exceeded 2 % for both the powders between
100 and 900 °C, suggesting stable thermal char-
acteristics. For CC-LiMn,0Oy, the LiMn,O4 may
be further generated from the impurity Mn, O3, re-
sulting in a little weight change (<0.6 %). For
GC-LiMn,Qy, there was a minor weight increase
(<2 %) between 100 and 900 °C, corresponding to
the further oxidation of LiMn,0O4 [13]. DTA anal-
ysis revealed minor endothermic change for CC-
LiMn,04 and a little exothermic change for GC-
LiMn; Oy, corresponding to the TG curves of CC-
LiMn,;04 and GC-LiMn; Oy, respectively.

The SEM surface morphologies of the products
prepared by the two methods are shown in Fig. 3.
The particles of CC-LiMn;0Oy4 in Fig. 3a are not
uniform and badly agglomerated. In contrast, the
particles of GC-LiMn;Oy in Fig. 3b and Fig. 3c are
uniform and well dispersed. The average particle
size of GC-LiMn;0Oy is ~ 200 nm.

Temperature (°C)

Fig. 2. TG/DTA curves of CC-LiMn;O4 and GC-
LiMn,O4. The test was performed at a heat-
ing rate of 10 °/min in the temperature range of
100 — 900 °C under air.

3.3. Electrochemical performance.

The initial discharge curve in Fig. 4 shows
two plateaus at 4.1 V and 3.9 V, which is a typi-
cal profile of LiMn,O4 [17]. The initial discharge
specific capacity and coulomb efficiency of GC-
LiMn;0O4 are 123 mAh/g and 92.9 %, respectively.
They are much higher than these of 81 mAh/g
and 87.8 % for CC-LiMn,; Q4. Moreover, the lower
charging plateau and higher discharging plateau of
GC-LiMn,04 demonstrates that the electrochemi-
cal performance of GC-LiMn;Oy is superior to that
of CC-LiMn;,0q4 [18].

The discharge curves at various current den-
sities in Fig. 5 show that the rate capability of
GC-LiMn;04 (Fig. 5(b)) is superior to that of
CC-LiMny04 (Fig. 5(a)). GC-LiMn,04 retains
much higher capacity at high rates than CC-
LiMn;O4does. Even at the current density of
300 mA/g, GC-LiMn;,Oq4offers a discharge spe-
cific capacity of 86 mAh/g. But for CC-LiMn;Oq,
the discharge specific capacity is only 42 mAh/g
at a current density of 150 mA/g. Cycling per-
formances of the two samples shown in Fig. 6
demonstrate that the cycling performance of GC-
LiMn, Oy is better than that of CC-LiMn,Oy4. The
discharge specific capacity of GC-LiMn,O4retains
82 % after 100 cycles, whereas the discharge spe-
cific capacity of CC-LiMn,Og4retains only 81 % af-
ter 30 cycles. It has been found that capacity and
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Fig. 4. Initial charge/discharge curves of (a) CC-
LiMny;Og4and (b) GC-LiMn,Osat 30 mA/g
within the voltage window of 3.2 — 435 V
versus metal Li. The test was performed in
a constant current and constant voltage mode.
The cell was charged with a constant current
(30 mA/g) to 4.35 V, held at 4.35 V for 1 hour
and discharged at a constant current (30 mA/g)
to3.2V.

s2vs Li'/Li 25°C (a)

1 SQmA/g

75mA/g
i 30mA/g
s

182 nm| 0

175 nm &

Voltage (V)

.
. 258 nm F—

40

‘ £ s
V Magn Det WD 1 1m
0.0 kV 50000x ;

38

30mAJ/g
Fig. 3. SEM morphologies of (a) CC-LiMn;Qy, (b) and 36

: 75mAlg
(¢) GC-LiMn, 0. a4l 150mA/g /
300mA/g

3.2

Voltage (V)

n . 1 n 1 n 1 n 1
0 20 40 60 80 100 120

Specific Capacity (mAh/g)

cycling performance can be improved by enhanc-
ing the purity and crystallinity of LiMn;O4 [19],

and rate capability can be enhanced by obtaining Fig. 5. Discharge curves at various current densities for

sub-micron and well dispersed particles [20]. GC- (a) CC-LiMn,04and (b) GC-LiMn,Oy4 at vari-
LiMn,O4 presented in this paper has high purity, ous current densities within the voltage window
good crystalliniy as well as sub-micron uniformly of 3.2 -4.35 V versus metal Li. The test was per-
dispersed particles therefore it exhibits improved formed in a constant current and constant volt-

electrochemical performance. age mode.
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Fig. 6. Cycling performance of (a) CC-LiMn;04 and
(b) GC-LiMn,04 at 30 mA/g in a constant cur-
rent and constant voltage mode. The cycling per-
formance was evaluated by using specific dis-

charge capacity as a function of cycle number.

4. Conclusions

Single phase spinel LiMn,;O4 with good crys-
tallinity has been synthesized by a glycerol-assisted
combustion synthesis at 600 °C for 5 h. Compared
with the product synthesized by the conventional
solution synthesis method at the same temperature
and time, the purity, crystallinity and micro mor-
phology, as well as the initial discharge specific ca-
pacity, rate capability and cycle performance of the
prepared product are greatly improved.
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