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Determination of critical stress triaxiality along yield locus of
isotropic ductile materials under plane strain condition
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It is widely accepted that failure due to plastic deformation in metals greatly depends on the stress triaxiality factor (TF).
This article investigates the variation of stress triaxiality along the yield locus of ductile materials. Von Mises yield criteria
and triaxiality factor have been used to determine the critical limits of stress triaxiality for the materials under plane strain
condition. A generalized mathematical model for triaxiality factor has been formulated and a constrained optimization has been
carried out using genetic algorithm. Finite element analysis of a two dimensional square plate has been carried out to verify the
results obtained by the mathematical model. It is found that the set of values of the first and the second principal stresses on
the yield locus, which results in maximum stress triaxiality, can be used to determine the location at which crack initiation may
occur. Thus, the results indicate that while designing a certain component, such combination of stresses which leads the stress
triaxiality to its critical value, should be avoided.
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1. Introduction
The triaxiality of the stress state is known to

greatly influence the amount of plastic strain which
a material may undergo before ductile failure. It
is defined as the ratio of hydrostatic pressure or
mean stress to the equivalent von Mises stress.
In order to evaluate these failure criteria and to
verify their application for industry, one has to
know the effect of stress triaxiality on fracture
and failure of materials. The literature survey
showing the effect of stress triaxiality on the
fracture of ductile material is carried out in the
present study. The main parameters that influence
initial void nucleation and growth, and hence
ductile fracture, are the triaxiality factor and the
plastic strain [1]. The failure of ductile materials
is often related to coalescence of microscopic
voids. The stress triaxiality is one of the primary
factors that influences the coalescence [2]. For
three different notched specimen geometries, stress
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triaxiality starts to increase almost linearly as
a function of the increasing plastic strain, with
a rate that is peculiar to the notch radius [3].
Both the yield and failure criterion depend on
the stress triaxiality [4]. The equivalent plastic
strain at fracture for austenitic steel decreases
exponentially with increasing stress triaxiality ratio
in the range from 0≤ TF≤ 2.7 [5]. Triaxiality ratio
shows how remarkably stress state parameter varies
during the post-necking plastic flow [6]. When the
necking starts, the stress triaxiality effect leads to
a sharp increase of the cavity growth rate [7]. The
specimens with the same stress triaxiality have the
same equivalent strain to crack formation, while
the specimens with different stress triaxialities
have different values of equivalent strain to crack
formation. It has been shown that the equivalent
strain and stress triaxiality are two the most
important factors governing crack formation, while
the stress and strain ratios cause secondary effects,
and that one can make a good prediction of
ductile crack formation with equivalent strain
and stress triaxiality alone [8]. In most forming
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processes, the stress triaxiality is so low that the
void height does not have any influence on the
value of the damage variable. The damage model
may be applied to stress triaxiality larger than
0.4, using any adequate void growth model [9].
Triaxiality-dependent modeling allows capturing
the correct crack initiation in a notched and
unnotched bar [10]. Stress triaxiality in the smooth
and notched specimens varies significantly with
plastic strain [11]. The macroscopic stress–strain
response and the void growth and coalescence
behavior of the voided cell were obtained
from detailed finite element analyses and the
results showed strong dependencies on the stress
triaxiality [12]. For the annealed material, the
ductility is slightly overestimated at the lowest and
at the largest triaxiality. It was also observed that
the stress triaxiality increased at very slow rate for
larger values of strain hardening exponent, n [13].

The accurate and meaningful modeling of
elastic and plastic behavior of ductile materials is
essential for the solution of numerous problems
occurring in various engineering fields. In the
first part, mathematical model is formulated for
stress triaxiality under plane strain condition and
non-linear optimization is carried out using genetic
algorithm in order to determine critical stress
triaxiality. The results obtained are verified by the
FE analysis of a two dimensional plate.

2. Genetic algorithm
Genetic algorithms are computerized search

and optimization algorithms based on the
mechanics of natural genetics and natural
selection [14]. The operation of GA’s begins with a
population of random strings or decision variables.
Thereafter, each string is evaluated to the fitness
value. Three main operators viz. reproduction,
crossover, and mutation are used to create a new
population of points to operate the population.
The population is further evaluated and tested for
termination. If the termination criterion is not met,
the population is iteratively operated by the above
three operators and evaluated. This procedure is
continued until the termination criterion is met.
One cycle of these operations and the subsequent

Fig. 1. Local and global optima.

evaluation procedure is known as a generation in
the GA’s terminology.

The basic difference of GA’s in comparison to
the traditional optimization methods is that GA
uses a coding of variables instead of variables
directly, a population of points instead of a
single point, and stochastic operators instead of
deterministic operators. All these features make
GA search robust, allowing it to be applied to
a wide variety of problems. The advantage of
using GA over other gradient based methods is
that the latter can be mapped on local optimum
whereas GA predicts global optima. In real-world
problems, the objective function usually contains
a number of optima of which one or more is a
global optimum. Other optima have worse function
values compared to the one at the global optimum.
Therefore a designer or a decision-maker, may
be interested in finding the global optimum point
which corresponds to the best function value. Fig. 1
gives the schematic representation of the global and
local optima.

3. Mathematical formulation
According to von Mises’ yield criterion,

yielding is not dependent on any particular normal
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stress or shear stress, but instead, yielding depends
on a function of all three values of principal
stresses. Since the yield criterion is based on the
differences of principal stresses, the criterion is
independent of the component of hydrostatic stress.
The von Mises’ yield criterion involves squared
terms; the result is independent of the sign of the
individual stresses. This is an important advantage
since it is not necessary to know which are the
largest and smallest principal stresses in order to
use this yield criterion. Von Mises equation of
yielding is given by:

(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2 = 2σ
2
y (1)

where σ1, σ2 and σ3 are the first second and third
principal stresses and σy is the yield stress.

In plane strain condition σ3 is given by:

σ3 = ν (σ1 + σ1) (2)

where ν is Poisson’s ratio.
Stress triaxiality factor (TF), which is defined

by the ratio of hydrostatic stress to the equivalent
von Mises stress, is given by the relation,

T F =
σh

σeqv
= (3)

1/3(σ1 + σ2 + σ3)

1√
2

√
(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2

Substitution of Eq. 2 in Eq. 3 gives

T F =
(σ1 + σ2)+ ν (σ1 + σ2)

3√
2

√
[σ1−σ2]2 +[σ2−ν (σ1 + σ2)]2 +[ν (σ1 + σ2)−σ1]2

(4)

Stress triaxiality should reach its critical or maximum value for the crack initiation to occur in ductile
materials [15, 16]. In order to get the maximum value of stress triaxiality, it is formulated as a constrained
non-linear programming problem as follows:

Objective Function =
(σ1 + σ2)+ ν (σ1 + σ2)

3√
2

√
[σ1−σ2]2 +[σ2−ν (σ1 + σ2)]2 +[ν (σ1 + σ2)−σ1]2

(5)

The Objective Function is subjected to constraints
given as:

Subjected to (σ1−σ2)2 +(σ2−νσ1−νσ2)2 +

(νσ1 + νσ2−σ1)2 = 2σ
2
y (6)

σ1L ≤ σ1 ≤ σ1U (7)

σ2L ≤ σ2 ≤ σ2U (8)

where,
σ1L= Lower limit of first principal stress
σ1U = Upper limit of first principal stress
σ2L= Lower limit of second principal stress
σ2U = Upper limit of second principal stress
The upper and lower bounds for the first

and second principal stresses considered for
optimization are set as:

0≤ σ1 ≤ 1000 (9)

0≤ σ2 ≤ 1000 (10)
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Table 1. GA Parameters.

GA Parameters Numerical Value

Population 30

Generations 100

Reproduction Type 2 point crossover

Selection type Sigma scaling

Mutation probability 0.005

Reproduction probability 0.85

Selection probability 0.85

Solution of the constrained programming
problem, given by Eqs. 5 to 8, is carried out
using GA. Specifications of GA parameters,
considered for the present analysis are shown in
Table 1. Fifteen sets were considered to make the
optimization strategy. The sets consisting of five
values of yield stress, from 200 MPa to 400 MPa
with an increment of 50 MPa, have been included
with every single value of Poisson’s ratio, which
was also varied from 0.2 to 0.4. For every set
of yield stress and Poisson’s ratio, the optimized
values of principal stresses have been obtained and
given in Table 2. The corresponding values of stress
triaxiality associated with each set of principal
stresses are given in Table 3. Variation of stress
triaxiality with respect to yield stress and Poisson’s
ratio is shown in Fig. 2.

4. Verification using finite element
analysis

In order to verify the results obtained by
using GA in the preceding sections, finite
element (FE) analysis is carried out with a two
dimensional square plate having dimensions of
100 mm×100 mm. PLANE82 element type is
considered for plane strain FE modeling. The
element is defined by eight nodes having two
degrees of freedom at each node: translations in
the nodal x and y directions. An element edge
length is taken as 2 mm. Young’s modulus is
taken as 2×105 N/mm2 with Poisson’s ratio varied
from 0.2 to 0.4. Boundary conditions are applied
on the left and bottom edges. The left edge is
constrained in x direction such that ux = 0 and

Fig. 2. Critical triaxiality map.

the bottom edge is constrained in y direction such
that uy = 0. Because of regular and axisymmetric
geometry, mapped meshing is preferred, as shown
in Fig. 3. There are a total of 2500 elements
connected with 7651 nodes. Uniformly distributed
loads are applied on each node in +FX and +FY
directions. The load is divided by the number of
nodes present on the top and right edges of the
plate so that the uniformly distributed loads should
be provided throughout the edge. The applied load
is determined by dividing the principal stresses
provided in Table 2 by the area of cross section of
the plate. FE results obtained after simulation give
the value of equivalent von Mises stress which is
found to be equal to the yield stresses at different
Poisson’s ratios considered for the present analysis
and are provided in Table 4. This verifies the
correctness of the result obtained by optimizing the
mathematical model given by Eqs. 5 - 8 using
GA. Fig. 4 (a to d) depicts the distribution of stress
throughout the plate.

5. Results and discussion
Mathematical formulation given by Eqs. 5 -

8 is optimized by using GA. Table 1 gives the
values of GA parameters considered for the present
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Table 2. Maximized values of the set of principal stress obtained through GA.

Yield Stress ν = 0.2 ν = 0.3 ν = 0.4
(σy) σ1 σ1 σ1 σ1 σ1 σ1

200 352.06 290.39 500.18 499.84 996.61 938.14

250 425.63 405.72 641.27 582.85 914.54 693.52

300 487.03 254.71 652.58 407.51 996.73 712.01

350 677.33 487.86 880.10 869.27 684.03 26.03

400 671.59 661.42 947.99 697.56 932.83 501.68

Table 3. Critical value of stress triaxiality at different
Poisson’s ratios.

Yield Stress (σy) ν = 0.2 ν = 0.2 ν = 0.2

200 1.284 2.166 4.515

250 1.330 2.121 3.001

300 0.989 1.511 2.658

350 1.263 2.165 1.306

400 1.333 1.763 1.673

Fig. 3. Finite element mesh.

Table 4. Equivalent von Mises stress at different
Poisson’s ratios obtained through FEA.

Yield Stress (σy) ν = 0.2 ν = 0.2 ν = 0.2

200 200.26 200.02 200.23

250 252.57 250.11 250.61

300 300.89 300.52 300.36

350 350.07 350.43 350.02

400 400.23 400.08 400.13

optimization problem. Tables 2 and 3 give the
critical values of the first and second principal
stresses obtained by GA and the corresponding
critical stress triaxiality. The contour map of
critical triaxiality is depicted in Fig. 2, which shows
that an increase in Poisson’s ratio leads to an
increase in stress triaxiality, which reflects that for
a particular set of principal stress, higher Poisson’s
ratio is more prone to initiate cracks as compared
to lower Poisson’s ratio. On the yield locus of
isotropic ductile materials many combinations of
principal stresses are possible. Tables 2 and 3
yield the critical values of principal stresses and
corresponding stress triaxiality at different yield
stress and Poisson’s ratios, which can decide about
the location of crack initiation occurring on the
yield locus. Thus, such combinations should be
avoided and clearly mentioned while designing the
components.

Results obtained by GA are verified by using
finite element analysis. Fig. 3 depicts the loading
and boundary conditions taken into account for
carrying our FE analysis. It is found that equivalent
von Mises stresses obtained for all the fifteen
cases given in Table 4 are found to be in very
good agreement with the actual yield stress and
Poisson’s ratio considered in case of mathematical
formulation.

6. Conclusion
The main focus of this paper is to develop a

general methodology for determination of critical
triaxiality of engineering material and its influence
on Poisson’s ratio and the set of the first and
the second principal stresses for ductile materials.
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(a) (b)

(c) (d)

Fig. 4. Distribution of (a) von Mises stresses (b) first principal stress (c) second principal stress (d) vector sum of
x and y displacements.

A mathematical model for the stress triaxiality
under plain strain condition has been formulated
and optimized using GA for the search of critical
triaxiality. To verify the results obtained by GA,
FE analysis is carried out on a two dimensional
square plate. Based on the investigations of this
study, it is found that there exists a critical
stress triaxiality factor along yield locus of
isotropic ductile materials, which decides about
the location of expected crack initiation to occur.
Thus, the stress triaxiality can be considered as
an unavoidable parameter in product design for
specific engineering applications.
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