
Materials Science-Poland, 29(4), 2011, pp. 266-271
http://www.materialsscience.pwr.wroc.pl/
DOI: 10.2478/s13536-011-0042-4

A general formula for the transmission coefficient through a
barrier and application to I−V characteristic∗
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A general formula providing the transmission coefficient through a given barrier, sandwiched by semiconductor reservoirs
under bias is presented in terms of the incoming carrier energy and the logarithmic wave function derivative at the start of
the barrier. Furthermore, the formula involves the carrier effective masses in the barrier and reservoir regions. The procedure
employed is based on solving an appropriate Riccati equation governing the logarithmic derivative along the barrier width at
the end of which it is known in terms of the carrier energy and applied bias. On account of the facility provided for obtaining
the transmission coefficient we obtained the I−V characteristic of a quantum dot carved barrier, which exhibits a region of
quite a large negative differential resistance together with a high peak to valley ratio. Under the circumstances, the possibility
of developing a nanostructure switch utilizing a small variation in the applied bias exists.
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1. Introduction
In a previous paper [1] the I−V characteristic

for a truncated parabolic barrier was obtained.
The methodology employed, relied on finding the
scattering wave function pertaining to the problem,
from which the transmission coefficient in terms
of the applied voltage was obtained. Once the
transmission coefficient becomes available, the I−
V characteristic can be acquired via the Tsu-Esaki
formalism [2, 3]. Another way of reaching the
transmission coefficient is based on the analytical
transfer matrix (ATM) method [4, 5]. With the
ATM procedure one can tackle the transmission
coefficient for any form of barrier, which in general
requires numerical handling.

In the present work we consider a nanostructure
made of a thin semi-insulating layer with a
semiconducting layer attached on either side. The
semiconducting layers act as reservoirs, while
a carrier along the width of the middle layer
experiences the barrier potential energy. The aim
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of the present work is to provide a scheme for
obtaining the transmission coefficient associated
with the barrier potential energy inclusive of its
modification by the application of an electric
field across the nanostructure. With the facility of
handling the transmission coefficient, in general,
the I−V characteristic of the nanostructure readily
follows.

In Section 2 we proceed to obtain a formula for
the transmission coefficient under bias on the basis
of a momentum related quantity, p(x), proportional
to the logarithmic wave function derivative. The
coefficient of proportionality is h̄/i, and x stands
for the carrier spatial coordinate along the barrier
width. The reason for the above modification lies
in showing the emergence of coincidence of the
quantum mechanical equation governing p(x) with
the classical equation of energy conservation in the
limit h̄→ 0. Details concerning the above follow in
the subsequent section.

In Section 3 the formalism developed for
obtaining the transmission coefficient as a function
of the applied voltage is employed numerically
in the case of a barrier carved in the form
of a parabolic dot under bias. The result is
subsequently employed in conjunction with the
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Tsu-Esaki formalism for the I −V characteristic.
The study shows the possibility of having a
region in the applied voltage whereby the I −
V characteristic exhibits an increased negative
differential resistance (strong drop in current over a
short interval of V ) with appreciable peak to valley
ratio.

2. Transmission coefficient
As pointed out earlier, our nanostructure

consists of a thin obstructive layer with a
semiconducting reservoir attached on either
side. For the purpose of facilitating subsequent
discussions we introduce a tri-orthogonal reference
frame, Oxyz, relative to the nanostructure, as
follows. The x-axis is taken perpendicular to the
thin layer, and the origin occupies the middle of the
perpendicular line through the layer in question.
The y and z-axes are taken so that, together with
the x-axis, they form a tri-orthogonal system. The
carrier motion in the x-direction is governed by
combination of the barrier and applied field force
together with the prevailing thermal state of affairs.
The motion in the yz- plane is essentially of thermal
origin. For reasons of subsequent communication,
we shall denote the regions in the left reservoir, the
thin semi-insulating layer, and the right reservoir
by (1), (0) and (2) correspondingly. Assuming the
thickness of the thin obstructive layer to be 2a
and the potential energy experienced by a carrier
within the layer region in the x-direction expressed
by Uo(x), the potential energy seen by a carrier
upon application of a bias, V , across the device can
take the form:

U(x) = 0,x≤−a (region(1))
(1a)

U(x) = Uo(x)−qε(x+a), −a< x< a (region(0))
(1b)

U(x) =−2qεa, x≥ a (region(2))
(1c)

q stands for the carrier’s charge and ε = V/2a for
the electric field experienced by the charge in the
obstructive layer region. It should be noted that a

certain displacement in the electric field is required
for taking account of the layer dielectric properties.

We consider the case whereby the carrier
effective mass in the three potential energy regions,
(1), (0), (2), to be given correspondingly by m1 =
µ1mc,mo = µomc, m2 = µ2mc, where mc stands
for the carrier mass. The usual way for obtaining
the transmission coefficient, in this case, requires
the scattering solution of the relevant Schrödinger
equation

[− h̄2

2mi

∂ 2

∂x2 +Ui(x)]Ψi(x) = EΨi(x)(i = 1,0,2)

(2)
where Ui(x) is given by (1a,1b,1c). The scattering
wave function in the three regions attains, as usual,
the form

Ψ1 = eik1x + Re−ik1x, x≤−a (3a)

Ψo = Ψo(x), −a≤ x≤ a (3b)

Ψ2 = Teik2x x≥ a (3c)

Ψ1 is made out of an incoming and a
reflected wave, while Ψ2 stands for an outgoing
wave, and Ψo is the prevailing wave function
within the barrier region. For obtaining the
tunneling solution of (2) in terms of the wave
function (3a, 3b, 3c), apart form considering energy
conservation throughout the three regions, the
probability and current densities at the barrier
boundaries must be continuous. These conditions
are guaranteed by:

Ψ1(−a) = Ψo(−a),Ψo(a) = Ψ2(a) (4a)

1
m1

Ψ
′
1(−a) =

1
mo

Ψ
′
o(−a),

1
mo

Ψ
′
o(a) =

1
m2

Ψ
′
2(a)

(4b)
where in (4b) prime indicates spatial derivative.

It should be noted that the wave function (3),
as it stands, is not normalized, but as it is
well known this does not affect the outcome
for the transmission coefficient utilizing such
a solution to the Schrödinger equation (2) as
long as the conditions (4a, 4b) are satisfied.
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Once the tunneling solution becomes available
the transmission coefficient, Tr, can be obtained
utilizing the expressions for incoming and outgoing
current densities

Jinc =
h̄k1

m1
(5a)

Jout =
h̄k2

m2
|T |2 (5b)

where k1 and k2 are related to the energy
eigenvalue, E, via

h̄k1 =
√

2m1E, h̄k2 =
√

2m2(E + qV ) (6)

The transmission coefficient takes the form

Tr(E,V ) =
Jout

Jinc
=

√
µ1(E + qV )

µ2E
|T |2 (7)

In order to find the coefficient T one has to solve
Schrödinger’s equation (2) under the continuity
conditions (4a, 4b). Cases suitable for analytical
treatment are limited, and in general one has to
proceed numerically.

In what follows we shall present another way
for handling the tunneling problem, based on
some sort of momentum related quantity, p(x),
constructed via the momentum operator, −ih̄∂/∂x,
as

p(x) =
h̄
i

Ψ
′
(x)

Ψ(x)
(8)

The quantity p(x) is in general complex. Prior
to proceeding with p(x) for our tunneling purposes,
certain remarks concerning p(x) would seem in
order. Taking into account that Ψ(x) satisfies
Schrödinger’s equation, one is led to the following
equation for p(x)

E =
p2

2m
+U(x)+

h̄
2mi

∂ p
∂x

(9)

Clearly, in the limit of h̄ → 0 (classical
regime) (9) goes to the classical expression for
energy conservation, and provides the classical
local momentum value. The last term in (9) takes

care of the quantum situation for a given energy, E,
and potential energy, U(x). It is precisely the last
term in (9) that makes the difference between the
classical and quantum mechanical considerations
and enables transmission across a barrier even if
the impinging particle’s kinetic energy is smaller
than the barrier’s height.

Let us, now proceed to handle tunneling via
equation (9) for p, taking account of the continuity
conditions (4a, 4b). The forms of the required
solutions for p in the regions (1) and (2), denoted
by p1 and p2, are easily accessible from the
corresponding forms of the wave functions Ψ1 and
Ψ2 We have, via (8)

p1 = h̄k1
eik1x−Re−ik1x

eik1x + Re−ik1x , p2 = h̄k2 (10)

where h̄k1 and h̄k2 are given in terms of the energy
eigenvalue, E, through (6). Clearly, p2 is fully
specified, while for p1 the reflection amplitude,
R, has to be determined. The solution for po

in the barrier region has to be obtained from
the associated Riccati equation (9) with U(x) =
Uo(x) − qV (x + a)/2a and m = µomc. Under
the continuity condition at x = a, po(a) can be
expressed as

po(a) =
µo

µ2

√
2µ2mc(E + qV ) (11)

For obtaining the above condition we
have made use of the relations po(a) =
h̄Ψ

′
o(a)/iΨo(a) = h̄moΨ

′
2(a)/im2Ψo(a), which

incorporate the continuity conditions (4b) at x = a.
Let us now assume that the solution to (9) in

the barrier region satisfying the condition (11) is
available. Taking account of the probability and
current continuity conditions (4a, 4b) at x = −a
expressed as

h̄Ψ
′
o(−a)/iΨo(−a) = h̄moΨ

′
1(−a)/im1Ψ1(−a) =

mo p1(−a)/m1,
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we obtain, utilizing (10)

po(−a) =
µo

µ1

√
2µ1mcE

e−ik1a−Reik1a

e−ik1a + Reik1a (12)

Form (12) we can determine the reflection
coefficient |R|2 from which we can form the
expression for the transmission coefficient, via

Tr = 1−|R|2 (13)

which takes the form

Tr(E,V ) =
Q1

Q2 + Q3
(14)

where

Q1 = 4µoµ1
√

2µ1mcERe[po(−a)]

Q2 = 2µ2
o µ1mcE + µ2

1 |po(−a)|2

Q3 = 2µoµ1
√

2µ1mcERe[po(−a)]

(15)

Formula (14) supplies the transmission
coefficient for any barrier, provided one can solve
the Riccati equation (9), associated with the barrier
region under condition (11). The equation, in
question, can be solved analytically in certain
cases, but in general numerically. It should be
noted here, that the method, laid above, bears
similarities to the ATM method [4, 5], but the
present procedure appears simpler, as far as the
process for obtaining the transmission coefficient
is concerned. It essentially involves solving a
Riccati equation in the barrier region.

3. I − V characteristic and
numerical results

For the I − V characteristic relating to a
barrier nanostructure consisting of a barrier with
a reservoir attached on either side we employ the
Tsu-Esaki formula [2, 3]. In our case it is modified
to account for the case of different effective masses
in the barrier and reservoir regions [1]. For the
current density in terms of the applied voltage, V ,

and temperature, T , we have:

J(V ) =
emcκT
2π2h̄3

∫
∞

0
Tr(E,V )

×{µ1 ln
[
1 + exp

(
E f l−E

kT

)]
−µ2ln

[
1 + exp

(
E f r−qV−E

kT

)]}
dE (16)

where κ stands for the Boltzmann constant and E f l ,
E f r are correspondingly the chemical potentials
for the left and right hand side reservoirs at
temperature T and zero field. When µ1 = µ2, E f l =
E f r. In case µ1 6= µ2, for given E f l one can obtain
E f r solving J(V = 0) = 0 with respect to E f r.

In what follows, we shall proceed with
numerical evaluations utilizing as a basic unit the
energy unit, Eu = 0.1 eV= 1.602191710−13 erg
from which, via h̄2/mcL2

u = Eu, the unit of length
is derived as Lu = h̄/

√
mcEu. The momentum unit

becomes pu = h̄/Lu =
√

mcEu. The voltage unit
is given as Vu = Eu/e, where e stands for the
absolute value of the electron charge. Finally, the
current density unit, Ju, will be the product of
the pre-factor of the integral in (16) times Eu,
i.e. Ju = emcκT Eu/2π2h̄3or Ju = eκT/2π2h̄L2

u.
Furthermore, for reasons of simplicity, we shall
be dealing with the absolute value of the electron
charge, e, which will be taken as the charge for our
carriers.

Let us now consider a nanostructure with
barrier potential energy Uo(x) = uox2/a2 in the
region −a < x < a. The potential energy seen by a
carrier under applied voltage, V , in the whole range
of the nanostructure, which includes the reservoirs,
is described by (1a, 1b, 1c) and takes the form

U(x) = Θ(x + a)0 +[Θ(x + a)−Θ(x−a)]

×[uo
x2

a2 − e
V
2a

(x + a)]+ Θ(x−a)eV (17)

where Θ stands, as usual, for the step unit function.
An instance of the carrier potential energy (17) is
depicted in Fig. 1, whereby the combined potential
energy experienced by a carrier due to a parabolic
quantum dot carved square barrier and an applied
electric field extending in the attached reservoirs,
each on either side of the barrier.
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Fig. 1. The combined potential energy experienced by
a carrier (formula 17). Data: Barrier height uo =
1 eV, applied voltage V = 0.4 Volt, and barrier
width 2a = 8Lu. Horizontal axis in units Lu =
0.872928 nm, and vertical in Eu = 0.1 eV.

Employing the momentum-like Riccati
equation (9) in the barrier region under
condition (11), we can obtain the quantity
po(−a) which via (14) leads to the corresponding
transmission coefficient. The procedure involves
numerical solution which for a given V supplies
Tr(E,V ) for a dense sequence of values of E
ranging from 0 to quite a large value of E.
Subsequently using interpolation we can obtain a
continuous function of the transmission coefficient
in terms of E for the given applied voltage, V . An
example of the function, in question, is given in
Fig. 2.

Once we are able to obtain the transmission
coefficient for a given V and a sufficiently large
range of E we proceed via (16) to obtain the current
density for the applied voltage, V . It should be
noted that the value of the logarithmic expression
in the curly brackets in the integrand in (16) beyond
a certain value of E becomes essentially zero.
Repeating the procedure for a dense sequence of
V starting from zero we are led to a graph for the
current density in terms of the applied voltage, V ,
for a given temperature, T . Fig. 3 provides such an
example.
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Fig. 2. Transmission coefficient oscillations as a
function of the carrier energy. Data: Barrier
height, uo, applied voltage, V , and barrier width,
2a, as in Fig. 1. Furthermore, the effective
masses in the three regions of the nanostructure
are characterized by the parameters µ1 = µ2 =
0.02, and µo = 0.1. Horizontal axis in units Eu.
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Fig. 3. Strong drop in current density as a function of
applied voltage. Data: As in Fig. 2, apart from
V , which now is a variable, and furthermore the
left hand side reservoir chemical potential E f l =
0.1eV and the device temperature T = 300 K,
for which Ju = 1.255 Cb/nm2·s.

4. Conclusion
The work provides a facility for obtaining

the transmission coefficient for a given barrier,
under bias, which can be used for reaching
the associated I − V characteristic. In this way
one can infer useful properties of nanostructures.
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Presently, the nanostructure considered provides an
I −V characteristic with extremely high negative
differential resistance. As can be seen from Fig. 3
the drop in current from peak to valley occurs over
an extremely small change in V (approximately
0.06 V) with a very high peak to valley ratio, a fact
pointing to the possibility of accessing some sort of
nanoswitch.
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