Microwave dielectric properties of BiFeO3 multiferoic films deposited on conductive layers

R. Sobiestianskas 1 , B. Vengalis 2 , J. Banys 1 , J. Devenson 2 , A. Oginskis 2 , V. Lisauskas 2  and L. Dapkus 2
  • 1 Faculty of Physics, Vilnius University, Saulètekio 9, Vilnius, Lithuania
  • 2 Semiconductor Physics Institute, Goštauto 14, Vilnius, Lithuania

Abstract

Nondoped BiFeO3 (BFO) and doped Bi0.9La0.1Fe0.9Mn0.1O3 (BLFMO) thin films (d = 200–350 nm) were grown at 650–750 °C by RF sputtering on Si and SrTiO3(100), coated by conductive LaNiO3 films and La2/3Ca1/3MnO3/SrRuO3 bilayers. The complex dielectric permittivity of the films was measured at room temperature in the frequency range from 10 MHz to 10 GHz using parallel plate capacitor structures. Dielectric properties of the polycrystalline BFO films were compared with those of the epitaxial quality BLFMO films, and it was seen that the latter has better microwave performance than the former. The dielectric losses were below 0.05 at 1 GHz frequency, which may be acceptable for microwave applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Fiebig M., J. Phys. D, 38 (2005). R123. http://dx.doi.org/10.1088/0022-3727/38/8/R01

  • [2] Smolenskii G.A., Chupis I.E., Sov. Phys. Usp., 25 (1982), 475. http://dx.doi.org/10.1070/PU1982v025n07ABEH004570

  • [3] Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Vehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., Spaldin N.A., Rabe K.M., Wuttig M., Ramesh R., Science, 299 (2003), 1719. http://dx.doi.org/10.1126/science.1080615

  • [4] Yuan G. L., Ora S. W., Liu J. M., Liu Z.G., Appl. Phys. Lett., 89 (2006), 052905. http://dx.doi.org/10.1063/1.2266992

  • [5] Yu B., Li M., Liu J., Guo D., Pei L., Zhao X., J. Appl. Phys., 41 (2008), 06503.

  • [6] Takahashi K., Kida N., Tonouchi M., Phys. Rev. Lett., 96 (2006), 117402. http://dx.doi.org/10.1103/PhysRevLett.96.117402

  • [7] Chen J.-C., Wu J.-M., Appl. Phys. Lett., 91 (2007), 182903. http://dx.doi.org/10.1063/1.2798256

  • [8] Zhang X-Y., Song Q., Xu F., Ong C.K., Appl. Phys. Lett., 94 (2009), 022907. http://dx.doi.org/10.1063/1.3062857

  • [9] Kamba S., Nuzhnyy D., Savinov M., Šebek J., Petzelt J., Prokleška J., Haumont R., Phys. Rev. B., 75 (2007), 024403. http://dx.doi.org/10.1103/PhysRevB.75.024403

  • [10] Qi X., Dho J., Tomov R., Blamire M.G., Macmanus- Driscol J.L., Appl. Phys.Lett., 86 (2005), 062903. http://dx.doi.org/10.1063/1.1862336

  • [11] Ma Z., Becker A.J., Polakos P., Huggins H., Pastalan J., Wu H., Watts K., Wong Y.H., Mankiewich P., IEEE Trans. Electron Devices, 45 (1998), 1811. http://dx.doi.org/10.1109/16.661229

  • [12] Sobiestianskas R., Vengalis B., Banys J., Proc. IEEE 18th Intl. Symp. Applications of Ferroelectrics ISAF 2009, Xian, China, 2009, p.232.

  • [13] Lancaster M.J., Powell J., Porch A., Supercond. Sci. Technol., 11 (1998), 1323. http://dx.doi.org/10.1088/0953-2048/11/11/021

  • [14] Krainik N.N., Khuchua N.P., Zhdanova V.V., Evseev V.A., Sov. Phys. Solid State, 8 (1966), 654.

OPEN ACCESS

Journal + Issues

Search