Abstract

In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor.

The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.

[1] Piotrowski, J., Rogalski, A. (2007). High-Operating-Temperature Infrared Photodetectors. SPIE, Bellingham.

[2] Piotrowski, J., Galus, M., Grudzien, M. (1991). Near room-temperature IR photo-detectors. Infrared Phys., 31(1), 1–48.

[3] Hunter, N., Mayorov, A.S., Wood, C.D., Russell, C., Li, L., Linfield, E.H., Davies, A.G., Cunningham, J.E. (2015). On-Chip Picosecond Pulse Detection and Generation Using Graphene Photoconductive Switches. Nano Lett., 15(3), 1591–1596.

[4] Newman, A.K., Liu, J.M. (1997). Physical characteristics of band-gap engineered, photovoltaic detectors. Journal of Applied Physics, 82(9), 4637–4646.

[5] Piotrowski, J., Gawron, W., Orman, Z., Pawluczyk, J., Kłos, K., Stępień, D., Piotrowski, A. (2010). Dark currents, responsivity, and response time in graded gap HgCdTe structures. Proc. SPIE, 7660, 766031.

[6] Spears, D.L. (1984). 10.6 micron photomixer arrays at 195. Proc. IRIS Active Systems, 331–349.

[7] Van Roosbroeck, W. (1950). Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29(4), 560–607.

[8] Kurata, M. (1982). Numerical Analysis for Semiconductor Devices. Lexington Books.

[9] Kopytko, M., Jóźwikowski, K., Jóźwikowska, A., Rogalski, A. (2010). High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes. Opto-Electronics Rev., 18(3), 277–283.

[10] Jóźwikowski, K., Jóźwikowska, A., Kopytko, M., Rogalski, A., Jaroszewicz, L.R. (2012). Simplified model of dislocations as a SRH recombination channel in the HgCdTe heterostructures. Infrared Physics & Technology, 55(1), 98–107.

[11] Piotrowski, A., Madejczyk, P., Gawron, W., Kłos, K., Pawluczyk, J., Rutkowski, J., Piotrowski, J., Rogalski, A. (2007). Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Phys. Technol., 49(3), 173–326

[12] Stanaszek, D., Piotrowski, J., Piotrowski, A., Gawron, W., Orman, Z., Paliwoda, R., Brudnowski, M., Pawluczyk, J., Pedzinska, M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820, M–74820, M–11.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 140 7
PDF Downloads 106 101 9