The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.

[1] O’Toole, G.A. (2002). A resistance switch. Nature, 416, 695−696.

[2] Flemming, H.C., Wingender, J. (2010). The biofilm matrix. Nat. Rev. Microbiol., 8, 623-633.

[3] Costerton, J.W., Stewart, P.S., Greenberg, E.P. (1999). Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 284, 1318-1332.

[4] James, G.A., Swogger, E., Wolcott, R., Pulcini, E., Secor, P., Sestrich, J., Costerton, J.W., Stewart, P.S. (2008). Biofilms in chronic wounds. Wound Repair Reg., 16, 37-44.

[5] Kim, T., Kang, J., Lee, J.H., Yoon, J. (2011). Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res., 45, 4615-4622.

[6] Ben-Yoav, H., Freeman, A., Sternheim, M., Shacham-Diamand, Y. (2011). An electrochemical impedance model for integrated bacterial biofilms. Electrochim. Acta, 56, 7780-7786.

[7] Cady, P., Dufour, S.W., Lawless, P., Nunke, B., Kraeger, S. J. (1978). Impedimetric screening for bacteriuria. J. Clin. Microbiol., 7, 273-278.

[8] Munoz-Berbel, X., Vigues, N., Jenkins, A.T.A., Mas, J., Munoz, F.J. (2008). Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens. Bioelectron., 23, 1540-1546.

[9] Yang, L., Li, Y., Griffis, C.L., Johnson, M.G. (2004). Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron., 19, 1139-1147.

[10] Farrow, M.J., Hunter, I.S., Connolly, P. (2012). Developing a Real Time Sensing System to Monitor Bacteria in Wound Dressings. Biosensors, 4, 171-188.

[11] Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J.L., Arana, S. (2013). Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sensor. Actuat. B-Chem., 178, 663-670.

[12] Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J.L., Arana, S. (2012). Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens. Bioelectron., 38, 226-322.

[13] Dheilly, A., Linossier, I., Darchen, A., Hadjiev, D., Corbel, C., Alonso, V. (2008). Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl. Microbiol. Biot., 79, 157-164.

[14] Piasecki, T., Guła, G., Nitsch, K., Waszczuk, K., Drulis-Kawa, Z., Gotszalk, T. (2013). Evaluation of Pseudomonas aeruginosa biofilm formation using Quartz Tuning Forks as impedance sensors. Sensor. Actuat. B-Chem., 189, 60−65.

[15] Munoz-Berbel, X., Munoz, F.J., Vigues, N., Mas, J. (2006). On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensor. Actuat. B-Chem., 118, 129-134.

[16] Yang, L., Ruan, C., Li, Y. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron., 19, 495-502.

[17] Chabowski, K., Junka, A.F., Szymczyk, P., Piasecki, T., Sierakowski, A., Mączyńska, B., Nitsch, K. (2015). The Application of Impedance Microsensors for Real-Time Analysis of Pseudomonas aeruginosa Biofilm Formation. Pol. J. Microbiol., 64, 115-120.

[18] Tsouti, V., Boutopoulos, C., Zergioti, I., Chatzandroulis, S. (2011). Capacitive microsystems for biological sensing. Biosens. Bioelectron., 27, 1−11.

[19] Bhavsar, K., Fairchild, A., Alonas, E., Bishop, D.K., La Belle, J.T., Sweeney, J., Alford, T.L., Joshi, L. (2009). A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrode. Biosens. Bioelectron., 25, 506−509.

[20] Nordin, A.N., Tarmizi, A.U., Ariff, M., Ghani, A., Mel, M. (2012). Printed Circuit Board Cultureware for Analysis of Colorectal Carcinoma Cells using Impedance Spectroscopy. 2012 IEEE EMBS International Conference on Biomedical Engineering and Sciences, 574-578.

[21] La Belle, J.T., Fairchild, A., Demirok, U.K., Verma, A. (2013). Method for fabrication and verification of conjugated nanoparticle-antibody tuning elements for multiplexed electrochemical biosensors. Methods, 61, 39-51.

[22] Ciosek, P., Zawadzki, K., Łopacińska, J., Skolimowski, M., Bembnowicz, P., Golonka, L. J., Brzozka, Z., Wroblewski, W. (2009). Monitoring of cell cultures with LTCC microelectrode array. Anal. Bioanal. Chem., 393, 2029-2038.

[23] Jędrychowska, A., Malecha, K., Cabaj, J., Sołoducho, J. (2015). Laccase biosensor based on low temperature co-fired ceramics for the permanent monitoring of water solutions. Electrochim. Acta, 165, 372-382.

[24] Malecha, K., Pijanowska, D.G., Golonka, L.J., Kurek, P. (2011). Low temperature co-fired ceramic (LTCC)- based biosensor for continuous glucose monitoring. Sensor. Actuat. B-Chem., 155, 923-929.

[25] Ciosek, P., Zawadzki, K., Stadnik, D., Bembnowicz, P., Golonka, L., Wroblewski, W. (2009). Microelectrode array fabricated in low temperature cofired ceramic (LTCC) technology. J. Solid State Electrochem., 13, 129-135.

[26] Vasudev, A., Kaushik, A., Tomizawa, Y., Norena, N., Bhansali, S. (2013). An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sensor. Actuat. B-Chem., 182, 139−146.

[27] Barsoukov, E., Macdonald, J.R. (2005). Impedance Spectroscop. Theory, Experiment and Applications. John Wiley & Sons.

[28] Zheng, L.Y., Congdon, R.B., Sadik, O.A., Marques, C.N.H., Davies, D.G., Sammakia, B.G., Turner, J.N. (2013). Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors, Sensor. Actuat. B-Chem., 182, 725-732.

[29] Munoz-Berbel, X., Garcia-Aljaro, C., Munoz, F.J. (2008). Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages, Electrochim. Acta, 53, 5739-5744.

[30] Piasecki, T., Chabowski, K., Nitsch, K. (2016). Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement, 91, 155−161.

[31] Piasecki, T. (2015). Fast impedance measurements at very low frequencies using curve fitting algorithms. Meas. Sci. Technol., 26, 065002.

[32] Babauta, J.T., Beyenal, H. (2014). Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes, Biotechnol. Bioeng., 111, 285-294.

[33] Bozkurt, A., Lal, A. (2011). Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system. Sensor. Actuat. A-Phys., 169, 89-97.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 179 21
PDF Downloads 106 106 20