Passive UHF RFID-Enabled Sensor System For Detection Of Product’S Exposure To Elevated Temperature

Open access


Temperature change is one of key factors which should be taken into account in logistics during transportation or storage of many types of goods. In this study, a passive UHF RFID-enabled sensor system for elevated temperature (above 58°C) detection has been demonstrated. This system consists of an RFID reader and disposable temperature sensor comprising an UHF antenna, chip and temperature sensitive unit. The UHF antenna was designed and simulated in an IE3D software. The properties of the system were examined depending on the temperature level, type of package which contains the studied objects and the type of antenna substrate.

[1] Janeczek, K., Jakubowska, M., Młożniak, A., Kozioł, G. (2012). Thermal characterization of screen printed conductive pastes for RFID antennas. Mat Sci Eng B-Solid, 177(15), 1336−1342.

[2] Yang, L., Vyas, R., Rida, A., Pan, J., Tentzeris, M.M. (2008). Wearable RFID-enabled sensor nodes for biomedical applications. Proc. of 58th Electronic Components and Technology Conference, Greenwich, Great Britain, 2156−2159.

[3] Qiao, Q., Yang, F., Elsherbeni, A.Z. (2012). Read range and sensitivity study of RFID temperature sensors. Proc. IEEE Antennas and Propagation Society International Symposium, Chicago, USA, 1−2.

[4] Virtanen, J., Ukkonen, L., Bjorninen, T., Sydanheimo, L., Elsherbeni, A.Z (2011). Temperature sensor tag for passive UHF RFID systems. Proc. Sensors Applications Symposium (SAS), San Antonio, USA, 312−317.

[5] Saldanha, N., Malocha, D.C. (2012). Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags. IEEE T Ultrason Ferr, 59(8), 1750−1758.

[6] Binder, A., Fachberger, R. (2011). Wireless SAW Temperature Sensor System for High-Speed High- Voltage Motors. IEEE Sens. J., 11(4), 996−970.

[7] Amin, E. Md., Karmakar, N. (2011). Development of a chipless RFID temperature sensor using cascaded spiral resonators. Proc. IEEE Sensors, Limerick, Ireland, 554−557.

[8] Guerin, M., Lauque, P., Bergeret, E., Pannier, P. (2010). A temperature and gas sensor integrated on a 915MHz RFID UHF tag. Proc. IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Hawaii, USA, 1−4.

[9] Cazeca, M.J., Mead, J., Chen, J., Nagarajan, R. (2013). Passive wireless displacement sensor based on RFID technology. Sensor Actuat A-Phys, 190, 197−202.

[10] Janeczek, K., Serzysko, T., Jakubowska, M., Koziol, G., Mlozniak, A. (2012). Mechanical durability of RFID chip joints assembled on flexible substrates. Solder Surf Mt Tech, 24(3) 206−215.

[11] Marrocco, G. (2008). The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas Propag, 50(1) 66−79.

[12] Tomar, G.S., Pratap, R., Kushwah, S., Kushwah, V. (2009). Tag Antenna Analysis for RFID. Proc.

International Instrumentation and Measurement Technology Conference, Singapore, 154−158.

[13] Qing, X., Goh, C.K., Chen, Z.N. (2009). Impedance Characterization of RFID Tag Antennas and Application in Tag Co-Design. IEEE T Microw Theory, 57(5) 1268−1274.

[14] Janeczek, K., Kozioł, G. (2011). Performance Characteristics of UHF RFID tags used in identification on liquids. Przegląd Elektrotechniczny, 5, 246−249.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 9
PDF Downloads 23 23 3