Efficiency of Linear and Non-Linear Classifiers for Gas Identification from Electrocatalytic Gas Sensor

Open access

Abstract

Electrocatalytic gas sensors belong to the family of electrochemical solid state sensors. Their responses are acquired in the form of I-V plots as a result of application of cyclic voltammetry technique. In order to obtain information about the type of measured gas the multivariate data analysis and pattern classification techniques can be employed. However, there is a lack of information in literature about application of such techniques in case of standalone chemical sensors which are able to recognize more than one volatile compound. In this article we present the results of application of these techniques to the determination from a single electrocatalytic gas sensor of single concentrations of nitrogen dioxide, ammonia, sulfur dioxide and hydrogen sulfide. Two types of classifiers were evaluated, i.e. linear Partial Least Squares Discriminant Analysis (PLS-DA) and nonlinear Support Vector Machine (SVM). The efficiency of using PLS-DA and SVM methods are shown on both the raw voltammetric sensor responses and pre-processed responses using normalization and auto-scaling

[1] Persaud K., Dodd G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299, 352-355.

[2] Scott S.M, James D., Ali Z. (2006). Data Analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207.

[3] Capone S., Forleo A., Francioso L., Presicce D.S., Rella R., Siciliano P., Spadavecchia J. (2003). Solid state gas sensors: state of the art and future activities. J. Optoelectron. Adv. M., 5, 1335-1348.

[4] Guth U., Vonau W., Zosel J. (2009). Recent developments in electrochemical sensor application and technology - a review. Meas. Sci. Technol., 20, 042002+14.

[5] Jasinski P., Nowakowski A. (2000). Simultaneous detection of sulphur dioxide and nitrogen dioxide by Nasicon sensor with platinum electrodes. Ionics, 6, 230-234.

[6] Chachulski B., Jasinski G., Jasinski P., Nowakowski A. (2006). Electrocatalytic gas sensors based on Nasicon and Lisicon. Materials Science-Poland, 24, 261-268.

[7] Jasinski P., Strzelczyk A.,. Chachulski B. A, Gazda M., Jasinski G. Investigation of sensing mechanism of Nasicon electrocatalytic sensors in nitrogen dioxide and ammonia. Sensor Actuat. B-Chem., in print.

[8] Jasinski P., Nowakowski A., Weppner W. (2000). Kinetic studies of Nasicon based sensors with cyclic voltammetry. Sensors and Materials, 12, 89-97.

[9] Schoemaker E.L., Vogt M.C., Dudek F.J. (1996). Cyclic voltammetry applied to an oxygen ion-conducting solid electrolyte as an active electrocatalytic gas sensor. Solid State Ionics, 92, 285-292.

[10] Shoemaker E.L., Vogt M.C, Dudek F.J., Turner T. (1997). Gas microsensor using cyclic voltammetry with a cermet electrochemical cell. Sensor Actuat. B-Chem., 42, 1-9.

[11] Jasinski G., Jasinski P., Nowakowski A., Chachulski B. (2006). Properties of a lithium solid electrolyte gas sensor based on reaction kinetics. Meas. Sci. Technol., 17, 17-21.

[12] Chachulski B., Jasinski G., Jasinski P., Nowakowski A. (2005). Lisicon solid electrolyte electrocatalytic gas sensor. J. Eur. Ceram. Soc., 25, 2969-2972.

[13] Pearce T.C., Gardner J.W., Schiman S.S., Nagle H.T. (2003). Handbook of machine olfaction. Wiley-VCH.

[14] Kotarski M. M., Smulko J. M. (2010). Hazardous gases detection by fluctuation-enhanced gas sensing. Fluctuation and Noise Letters, 9(04), 359-371.

[15] Nesbitt W., Quon D.H.H., Wheat T.A. (1980). Synthesis, characterization and fabrication of Na1+xZr2SixP3- xO12. Mater. Res. Bull., 15, 1533-1539.

[16] Jasinski G., Jasinski P. (2011). Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode. IOP Conference Series: Materials Science and Engineering 18, 212007

[17] Palit M., Tudu B., Bhattacharyya N., Dutta A., Dutta P.K., Jana A., Bandyopadhyay R., Chatterjee A. (2010). Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea. Anal. Chim. Acta, 675(1), 8-15.

[18] Ciosek P., Wróblewski W. (2006). The analysis of sensor array data with various pattern recognition techniques. Sensor Actuat. B-Chem., 114(1), 85-93.

[19] Schreyer S.K., Mikkelsen S.R. (2000) Chemometric analysis of square wave voltammograms for classification and quantitation of untreated beverage samples. Sensor Actuat. B-Chem., 71(1-2), 147-153.

[20] Yu H., Wang J., Xiao H., Liu M.(2009). Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sensor Actuat. B-Chem., 140(2), 378-382.

[21] Tiwari K., Tudu B., Bandyopadhyay R., Chatterjee A.(2013). Identification of monofloral honey using voltammetric electronic tongue. J. Food Eng., 117(2), 205-210.

[22] Richards E., Bessant C., Saini S. (2002). Optimisation of a neural network model for calibration of voltammetric data. Chemom. Intell. Lab. Syst., 61(1-2), 35-49.

[23] Chang C.C, Lin C.J. (2011). LIBSVM: a library for support vector machines. ACM Transactions onIntelligent Systems and Technology, 2, 27:21-27:27.

[24] Winquist F., Wide P., Lundström I. (1997). An electronic tongue based on voltammetry. Anal. Chim. Acta, 357(1-2), 21-31.

[25] Wold S., Esbensen K., Geladi P. (1987). Principal component analysis, Chemom. Intell. Lab. Syst., 2(1-3), 37-52, ISSN 0169-7439

[26] Di Natale C. Martinelli E. D'Amico A. (2005). Pre-processing and pattern recognition methods for artificial olfaction systems: a review. Metrology and Measurement Systems, 12(1), 3-26.

[27] Ben-Hur A, Weston J. (2010). A user's guide to support vector machines. Methods in molecular biology(Clifton, N.J.) In Data Mining Techniques for the Life Sciences, Springer Protocols, 609, 223-239.

[28] Wold S., Sjöström M., Eriksson E. (2001). PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst., 58(2), 109-130.

[29] Ciosek P., Brzózka Z., Wróblewski W., Martinelli E., Di Natale C., D’Amico A. (2005). Direct and twostage data analysis procedures based on PCA. PLS-DA and ANN for ISE-based electronic tongue-Effect of supervised feature extraction. Talanta, 67(3), 590-596.

[30] Vapnik V.N. (1995). The Nature of Statistical Learning Theory. Springer.

[31] Pardo M., Sberveglieri G. (2005) Classification of electronic nose data with support vector machines. Sensor Actuat. B-Chem., 107, 730-737.

[32] Kumar R., Bhondekar A.P., Kaur R., Vig S., Sharma A., Kapur P. (2012). A simple electronic tongue. Sensor Actuat. B-Chem., 171-172, 1046-1053.

[33] Kaur R., Kumar R., Gulati A., Ghanshyam C., Kapur P., Bhondekar A.P. (2012). Enhancing electronic nose performance: A novel feature selection approach using dynamic social impact theory and moving window time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). SensorActuat. B-Chem., 166-167, 309-319.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 194 21
PDF Downloads 69 69 7