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Abstract: A numerical study on the classical Lotka-Volterra model is performed, using 
approximate inertial manifolds. An analytical study consisting in the inertial form of the system is 
made. The construction of the approximate inertial manifolds is based on the identification of the 
absorbing domains using the graphical representations of the phase portraits. The hypotheses of the 
Jolly-Rosa-Temam algorithm are verified for certain values of parameters and the approximate 
inertial manifolds are constructed. Errors of approximation are computed. 
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1. Introduction  

During the last thirty years a new study on the infinite dynamical systems has evolved. It 
concernes the dynamics in the presence of the global attractor. Usually, the attractors have 
complicated geometrical structure and they may attract the orbits very slowly. The phase 
dynamics may be reduced close to the global attractor, on the inertial manifold. This concept was 
introduced by Foiaş and Constantin and much used by Nicolaenko, Sell and Temam[1-3]. 

An inertial manifold M is a finite dimensional Lipschitz manifold, positively invariant (i.e. S(t) 
M  M, t   0) exponentially attracting all phase trajectories of the semidynamical system 
associated withthe Cauchy problem  for an evolution equation ( )u F u  [3]. 

Lotka-Volterra model (prey-predator)[4] is the Cauchy problem 0=(0) xx , 0=(0) yy for the 
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It was conceived by Lotka (1925) and Volterra (1931) observing the variation of fish population. 
The parameters signify: a is the intrinsec rate of growing for prey population, b predation rate 
coefficient, c predator population mortality, d reproduction rate of predatorsperunit of prey eaten. 
The variables, x , y  represent, density of prey and predators respectively. Values of x , y and a , 
b , c , d also must be positive.  

System (1) represents as well a model of economic dynamics, namely Goodwin’s model 
ofincome distribution, based on class struggle and inspired by the Lotka-Volterra model. In the 
economic case, x is the rate of employment, i.e. workers/work force, y workers’ shareof national 
income, 1,0  yx .  

The Lotka Volterra model is very important in population modeling. It describes the population 
dynamics of two interacting species (prey-predator or parasite-host pairs). The analysis of the 
system may be used, in particular, to predict the probability of extinction. It describes the 
dynamics  in models from ecology, molecular biology, ecosystems, and chemical systems (for 
example a model for oxygen depletion in a system of sewage could be developed). It can also be 
used in the detection of failures in civil structures. 

0=(0) uu



Lotka-Volterra hasapplicability in hydraulics, for example the food-chain in rivers can be 
modelled using this system. It also describes the evolution of the dispersion of pollutants. It is 
known that nature can absorb a pollutant up to certain limits (threshold value). Experiments 
show that the dependence between the emitted quantity of a pollutant and the remaining quantity 
can be described by a certain function. If some quantity of the pollutant is emitted regularly, we 
obtain an iterative process for a sequence of functions describing the dependence between the 
emitted and remaining quantities of the pollutant. Using this discrete functional model, a system 
of two differential equations of Lotka-Volterra types may be constructed.  

We present various results of numerical simulation for our model. In this paper we make an 
approximate study of the system using the approximate inertial manifolds, which is in fact a 
nonlinear Galerkin method. Inertial manifolds are very important since they describe the large 
time behavior of the system and they are finite-dimensional. Study of the dynamics on an inertial 
manifold produces a significant simplification in the study of the dynamics of the initial system.  

In this paper we study numerical and analitical the Lotka-Volterra system using approximate 
inertial manifolds.  

 

2. Inertial form  

System (1) can be written as  
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System (2) projected on 2RP and on 22 \ RR P respectively is written as follows 
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The first equation from (4) represents the inertial formof the system.  

Solving the second equation from (4) in 2q , we obtain 
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Replacing it in the first equation, we get 
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equation which describesthe dinamics on the inertial manifold. 



 

3. Jolly-Rosa-Temam algorithm for Lotka-Volterra model 

In [5-7] an algorithm is developed for the construction of a sequence of approximate inertial 
manifolds, with the same dimension, which converges to the exact inertial manifold. 

In [8,9] we verify the assumptions of  Jolly-Rosa-Temam algorithm [5,6]  for the Lotka-Volterra 
system (2) truncated to a disk of radius  in two cases according to the values of the parameters. 
Thus, we obtain the prepared equation  
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         (6) 

where ),(= yxu ,  
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As in [8], it results that the first condition is satisfied 
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where )22}(6,{max=  dbM is the Lipschitz constant for the prepared equation.  

For the verification of the third condition, we notice that .
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We distinguish several cases, according to the values of parameters a  and c .  

Case I. 0>a  and 0>c  It is the only case with biological reality. The other cases have only 
theoretical interest, but they may be used in the study of bifurcation.  

Since the condition nn <0  must be satisfied,this caseis divided in two situations 
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For the fifth condition of the algorithm, we take 1=3K , and the inequality becomes na  || , which is 
satisfied.  

Since 0= , a sufficient condition of gap in the spectrumis satisfied if  
).22}(6,{max6>  dbac        (7) 

If the parameters verify (7), then all the hypothesis are satisfied, thusJolly, Rosa and Temam’s 
algorithm can be applied to the prepared equation Lotka-Volterra (6). A sequence of 
approximate inertial manifolds, for this case, will be constructed in the next section.  

b) If ca > , using the same projectors P  andQ as in case Ia)and 0=1,=1,= 21 KK , to have
t
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The fifth condition is written as
10

1
3Ka  , which means we can choose 3K , independent of n . 

Case II. 0<a , 0>c . There are also two situations 

a) If ca  we can choose the projectors P  andQ as in case Ia), and

0=1,=1,=,=,= 21  KKca nn  . Thus
t
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t

eeQe ncttA  = for all 0t .  

For 1=3K , the fifth condition is written as aaa n  || , which is satisfied.  

For 0= , the gap condition is 
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We choose 1=3K and, as cAP = , the fifth condition is verified.  

Since 0= , the gap condition is 
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Case III. 0>a , 0<c . In this case, we prove that for the projectors we used before, the Jolly-
Rosa-Temam algorithm can not be applied.  
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Case V. For 0=a  or 0=c , matrix A  is not invertible, so the sixth condition is not verified. 

In conclusion,  Jolly-Rosa-Temam method can be applied in case  I, II and IV. 

 

4. Approximate inertial manifolds for the prepared equation Lotka-Volterra. Estimation 
of errors 

We plot |=|2 Quq as function of time, on the approximate inertial manifold, for Lotka-Volterra 
model. We approximate the distances between the orbits on the exact inertial manifold and those 
on the approximate inertial manifold. 

We implementJolly-Rosa-Temam algorithm [5,6] in Scilab [10]. We plot the approximate 
inertial manifolds and compute errors of approximation. The numerical computations are made 
in Scilab and  verified in Maple 10.  

For = 2, = 0.001, = 0.002b d , we find c such as the spectral gap condition to be 
accomplished (9).  Thus, 0.13632>ac . 



We consider 0.01=a  and 0.85=c , to have the condition verified there must be
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2 , the algorithm can be applied.  

For an initial prey population of1000 and5  predators, in fig. 1 we represent || Qu as function of 
time for 3, 4, 5 and 6 iterations.  

 

Fig. 1–Graphycal representation of |=|2 Quq  on the a.i.m., for  

a) 3 iterations, b) 4 iterations, c) 5 iterations, d) 6 iterations; 

a = 0.01, b =0.001 , c = 0.85, d =0.002 ; 5=1000;= 00 yx .   

As 0=0M , results 0.8349==
0,,   nn . The error is |)|(10.8349=)( 0

0.42
1 peR t  .  The 

second evaluation of errors is  
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The error, i.e. the distance between the aproximative orbitsandthe exact orbitsobtained for a 
maximum of tweenty iterations is plotted in fig. 2. We notice that the errors are large even for 
more iterations.  

 

Fig. 2– Errors for Lotka-Volterra modelfor  

a = 0.01, b =0.001 , c = 0.85, d =0.002 ; 5=1000;= 00 yx .  

For the initial point 0 0= 426, = 0x y , which is close to the center, we make the graphycal 

representations for || Qu as function of time, for 6 iterations in fig. 3.  

 



Fig. 3–Graphycal representation as function of t for |=|2 Quq  

a = 0.01, b =0.001 , c = 0.85, d =0.002 ; 0=426;= 00 yx . 

 

For the computation of errors, as 6990.02262741=M ,  must be in ),0.7821177(0.0778823 . 

For 0.1=0  and 0.7= , we have
3

2
<0.1836428=;0.7nk  and

3

2
<0.2815856=;0.1nk . The errors 

we obtain are in Table 1. In fig. 4 the errors are plotted, as function of number of iterations. We 
observe that the error is reducingvery slowly, after four iterations, thus the six iterations from fig. 
3. are enough. The errors are much smaller in this case when we choose the initial point from 
Ox axis, compared to the first case, when we take it arbitrarily in the plane.  

 

Table 1 
Errors of approximation for a = 0.01, b =0.001 , c = 0.85, d =0.002 ; 0=426;= 00 yx  

No. of 
iterations 

1  2 3 4 5  6  

Error  0.6007883   0.2601108   0.1965531   0.1839417  0.1792331   0.1792331  
 
 

 
Fig. 4 – Errors for Lotka-Volterra model for 

a = 0.01, b =0.001 , c = 0.85, d =0.002 ; 0=426;= 00 yx  

 

For the parameters a =-20, b =1 , c = 1, d =1, we are in case II b). We take
20

1
=  and the gap 

condition is satisfied ( 418.7705627>19 ). From the above considerations, we conclude that the 
other hypotheses are verified, thus the Jolly-Rosa-Temam can be applied. For the initial point

0 0= 0.005, = 0x y , which is in the absorbing domain of the attractive node, we plot || Qu as 

function oftime, for 6 iterationsin fig. 5. The initial point must be in this case on Oy .  

 

 
 

Fig. 5 – Graphycal representations of |=|2 Quq  on the a.i.m., for Lotka-Volterra model, for 6 iterations;

a =-20, b =1 , c = 1, d =1 ; 0.04=0;= 00 yx  

 

To compute errors, since 43.12842712=M ,  must be in ),10.614719(10.385281 . For

10.386=0  and 10.613= , we have
3

2
<0.6587111=;10.386nk  and

3

2
<0.6587094=;10.613nk  and 



the results for errors are in Table 2. In fig. 6,we plot errors as function of the number of 
iterations, for 200 iterations. Errors are large and they decrease very slowly. 

 

Table 2 

Errors of approximation for a =-20, b =1 , c = 1, d =1 ; 0.04=0;= 00 yx  

No.of 
iterations 

 1  2 3 4 5  6  

Error  110.31718   178.82244   223.6767   252.96749  272.01457   284.31836  

 
Fig. 6 – Errors for Lotka-Volterra model in case a =-20,b =1, c = 1, d =1; 0x =0, 0y =0.04.   

5. Conclusions 

The study on inertial manifolds is very important since it reduces the study of differential 
equations to a space with a lower dimension, simplifing the asymptotic study (for large time). 
The construction of an exact inertial manifold is possible very rarely, thus the approximation 
methods are very important. 

The conditions that must be fulfilled to have approximate inertial manifolds according to Jolly-Rosa-
Temam algorithm are quite restrictive and the values of the parameters are difficult to be found.  
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