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Abstract: The paper is about some aspects concerning the nonlinear dynamic analysis of 
prestressed cable structures. A method for the assessment of the tangent stiffness matrix and of the 
nonlinear parameters is proposed. The methodology is similar to the one described by P. Krishna. 
The Newmark method is used to integrate the motion equation. In the final section of the paper a 
comparison between the output supplied by the software of the presented method is made, with 
constant stiffness matrix(linear) and with the non-linear matrix updated step by step (geometric 
non-linear). The elements used for comparison are the displacement and velocity response of a 
given pretensioned cable structure.  

Keywords: prestressed cable, dynamic analysis, stiffness matrix, Newmark method  

1. Introduction 

Dynamic structural analysis can be classified in two categories: linear and nonlinear structural 
analysis. 

The differential equation of movement for a nonlinear behavioral model is [1]:  

P(t)f(U))Ug(UM =++⋅ ,       (1) 
or: 

P(t)f(U)(U)gUM =++⋅ U1        (1’) 

where:         T)]nu,,u(ng)nu,,u([g)Ug( … 111=  is the damping function; 

T
nnn )]uufuu[ff(U) ,,(),,( 111 …=  is the stiffness function and:  

T
n(t)]p(t)[pP(t) …1= is the stimulus function. 

The solution to equation (1) is called dynamic response in terms of displacements U(t) , 
velocities (t)U  and accelerations (t)U . 

Nonlinearity can be classified into geometric nonlinearity and/ or physical non-linearity (from 
the composing material). In the case of cable structures, geometric nonlinearity is always 
present. 

In the following sections different cases of nonlinearity will be discussed, especially geometric 
nonlinearity. 

2. Computation of the Tangent Stiffness Matrix 

For equation (1), namely: 

P(t)f(U))Ug(UM =++⋅  
f(U) is taken under the following form:  

R(U)UKf(U) +⋅=         (2) 



K is the tangent stiffness matrix; U is the displacements vector in the node, R is the residual 
terms vector which contains the non-linear terms from U. 
The elements of the stiffness matrix are computed using a formula similar to the one presented in [2].  
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The directing cosines  x,y,z)(dθi
d =  are computed through the nodes coordinates. 

F – prestress force;  

E –modulus of elasticity;  

A – cross-sectional area of cable;  

θ – directing cosines;  

l – length of the elements . 
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The displacements vector is: 
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The residual terms vector from (3) has the following form: 
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The Jacobian of f in initial configuration is: 

RAKA(U) +=          (4) 

For evaluating the Jacobian AR, the numerical derivation through devised differences procedure 
from [3] was used. At step (k) the expression of the differential coefficient is: 
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where h is small (the order 10-3-10-5).The movement equation is solved using the Newmark [4] 
integration operator described in [5].  

For the Newmark formulae [6] in the case of geometrical nonlinearity the following algorithm is 
used: 

1. The X0 coordinates are read (at time t0) 

2. Initialization of i = 0 

3. Computation of li, θi (the length, the directing cosines at ti) 

4. Computation if the stiffness matrix according to (3) K(Ui) (for each ti) 

5. By integration Ui+1, 1U +i are obtained  

6. Xi+1 = Xi + Ui+1   (in the Newmark formula WβhUU ii
2

11 += ++ ) 

7. i = i+1 
8. If i < TT/h   (where TT is the Total Time) go to 3, else go to 9 

9. Write the results 

3. Newmark Integration Operator and Resolution Method 

This is one of the most used operators due to its precision and stability characteristics. 

The formulae for a single equation proposed by Newmark are [4]: 

1
22

2
1

1 )( ++ +−++= iiiii uhuhuhuu ββ
      (5) 

11 )1( ++ +−+= iiii uhuhuu γγ        (6) 

In the case: 2
1≠γ , the method introduces an artificial damping of the displacement response, 

which is proportional to 2
1−γ . Considering 2

1=γ , equation (6) becomes: 

12
1

2
1

1 ++ ++= iiii uhuhuu        (6') 

Formulae (5, 6’) are controlled by parameter β. For this reason, the method is called β-Newmark 
method. The operator is implicit because it contains  1+iu  in the second member. Formulae (5, 
6’) can be rewritten as: 

1
22

2
1

1 ++ +++= iiiii uΔβhuhuhuu
      (7a) 



11 ++ ++= iiii uγhΔuhuu         (7b) 
11 ++ += iii uΔuu          (7c) 

where iii uuu −=Δ ++ 11  represent the increase in acceleration at the end of the interval. Thus, the 
formulae estimate the remainder in Taylor series of the functions u and u  [5]. 

For a system, formulae (7 a-c) are: 

111 +++ += iii UβΔUU         (8a) 

111 +++ += iii UγΔUU         (8b) 

11 ++ += iii UΔUU         (8c) 
where the functions with a bar superscript represent the truncated Taylor series, namely: 

1
2

2
1

1 ++ ++= iiii UhUhUU        (9a) 

iii UhUU +=+1          (9b) 

3.1. Integration of Equation (2) 

In order or simplify the notation, we denote with 1 the index of the current step and with 0 the 
index of the previous ( 110 tt,tt ii == + ). By replacing (8 a, b, c) in (2), we obtain: 

)P(t)UΔβhUf()UγhΔUg()UΔU(M 11
2

11110 =+++++⋅    (10) 
and denoting:  

1UΔW = , 
equation (10) becomes: 

0=F(W)           (11a) 

Using the notations in § 2, R(U)UKf(U) +⋅= . Thus we have: 

)P(tUM

W)βhUR(W)βhU(KγhW)Ug(WMF(W)

10

2
1

2
11

−⋅+

++++⋅+++⋅=
  (11b) 

Equation (11a) is solved using the Newton method or using the fixed point iteration. Each 
integration step in the solution is performed in order to compute: 1+= iUΔW . 

3.1.1 Newton Method 
We denote with J(W) the Jacobian of function F, namely: 

W)βhU(AβhKβhγhW)UγhB(MJ(W) R
2

1
22

1 +++++=  

where B and AR are the Jacobians of functions g and R. K is the rigidity matrix that appears in the 
formula  due to the fact that during the evaluation of Jacobian, terms K and R were considered. 
The iteration scheme is: 

)F(W)δJ(W nnn −=+1         (12a) 
0011 =+= ++ ;   WδWW nnn        (12b) 

Iteration (12) is considered until one of the following conditions is met: ε||||δn ≤+1 ,  
number of iterations  ≤  LNIT, where EPS and LNIT are previously chosen. Generally, a reduced 
number of iterations is sufficient. 



4. CASE-STUDY STRUCTURES 

The analyzed structure is a saddle surface (hyperbolic paraboloid) [7]. The properties of the 
structure are presented in Figure 1 and the coordinates in the table below. 

Table 1 

Coordinates of the structure 

Node 
no 

X [m] Y [m] Z [m] 

1 -15.24 -19.05 -1.2954 
2 0.0 -19.05 -1.905 
3 15.24 -19.05 -1.2954 
4 -15.24 0.0 0.6096 
5 0.0 0.0 0.0 
6 15.24 0.0 0.6096 
7 -15.24 19.05 -1.2954 
8 0.0 19.05 -1.905 
9 15.24 19.05 -1.2954 

10 -15.24 -38.1 -7.0104 
11 0.0 -38.1 -7.62 
12 15.24 -38.1 -7.0104 
13 -30.48 -19.05 0.5334 
14 30.48 -19.05 0.5334 
15 -30.48 0.0 2.4384 
16 30.48 0.0 2.4384 
17 -30.48 19.05 0.5334 
18 30.48 19.05 0.5334 
19 -15.24 38.1 -7.0104 
20 0.0 38.1 -7.62 
21 15.24 38.1 -7.0104 

The following types of cables were used for obtaining the structure: 

In the direction of X: Ф 66.60 mm  Ax = 34.84 cm2 

In the direction of Y: Ф 88.80 mm  Ay = 61.935 cm2 

 
Fig. 1 - The analized structure 



The characteristic curve was considered linear (even if the authors use a material with nonlinear 
behavior), where the modulus of elasticity is 15858 kN/cm2.  

The masses are considered lumped in the nodes. The equivalent node masses were computed 
according to the proper weight 960 N/m2 given in Ma & Leonard example [7], thus resulting a 
forced of 288kN applied to the node, which represents a mass concentration  
mc = 28.41 kNs2/m. 

/mskN.  ./. cm 

 kN/node....  P  N/mq nod
2

2

412881971278

71278960005192415960

⋅==

=⋅⋅=⇒=  

A very important phase during the design and execution of cable structures is the prestress which 
assures the proper behavior [8] to different types of dynamic stresses (wind, earthquake) over the 
structure exploitation period. 
The prestressing forces are approximately equal in all the composing elements such that the ratio 
between the sag/ span is reduced (the structure can be considered flat shaped). The cables in the 
X direction were prestressed with a force of 28 kN /cm2, thus resulting a prestressing force 

kNTx  52.9750 = , 
0
yT  = 1781.87 kN – for the intermediate elements; 
0
yT  = 1858.05 kN – for the edge elements. 

The prestressing forces are synthesized in Table 2.  
Table 2  

 Prestressing forces  
(kN/cm2) 

Cables on direction Marginal 
elements 

Intermediate 
elements 

X 28.0 28.0 
Y 30.0 28.77 

It is considered that the system is in equilibrium under the action of its own weight and the 
prestressing forces. This structure is subject to a uniformly distributed load of 27.54 daN/m2 
which is transformed to a equivalent node load of 501 kN, applied in each node.  

5. Results 

In the following, the authors will present graphically the displacements and velocities for node 5 
on Z axis, with t0 = 0, TT = 6 seconds and h = 10-2.  

The differences computed through direct numerical integration using both the linear and non-
linear Newmark operators can be observed. 

 
Fig 2 - Displacement graphic 



 
Fig. 3 - Velocity graphic 

6. Conclusions 

In the graphics above an interesting difference can be observed between the linear and non-linear 
computations. In both cases the Newmark method was used, with the difference that for the 
linear case the integration using the constant stiffness matrix was used and for the non-linear the 
matrix was updated step by step. The differences are not large but significant. It is clear that the 
processing time is higher in the case on non-linear analysis. Naturally in the case of the 
displacements the differences are larger than in the case of the velocities. The final conclusion is 
that structures built of trailing (suspended) cables must be non-linearly analyzed for obtaining 
accurate results or at least geometrically non-linear analyzed. 
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