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Abstract: In this paper we will study the statistical distributions for the extreme discharges of the 
Danube River using kernel functions. We will also compare the results with those obtained using 
classical cumulative distribution functions (Pareto, Weibull, etc). 
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1. Introduction 

In hydrological processing of maximum discharges some parametric statistical distributions are 
used, from which the most common are: Pearson III, log-normal, GEV (Generealized Extreme 
Values), GPD (Generalized Pareto Distribution) etc. Based on the processing performed to obtain 
maximum flow rates with different probabilities of exceedance the synthetic flood waves that are used in 
sizing or checking waterworks. In this way the use of maximum discharge is presented in order to 
determine the rate of the crest dam, the size of large waters' spillways or flood extension 
corresponding to standard exceedance probabilities (10%, 1%, 0.1% or 0.01%). The delimitation of 
floodrisk zones has the goal to prevent the damages produced due to flooding. 

The main criticism of this approach is the fact that, because we have low volume samples, the 
appropriate probability density function is unknown. To circumvent this difficulty, in this paper 
we propose the use of kernel functions for estimating the empirical pdfs. 

Using these kernel functions we will estimate the quantiles and the confidence intervals for the 
quantiles, starting from a maximum annual discharges sample of the Danube in the region of 
Budapest. 

Definition 1 [8,10]. It is called kernel function a pdf that allows the estimation of another 
unknown pdf starting from a given sample. 

If we have a sample of volume n, X1,..., Xn, we estimate the pdf ( )f x , for an arbitrary x by 
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where K is the kernel function, and bn is the bandwidth. 

There exist several types of kernel functions jK K=  used in literature. 
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where K0 is the rectangular kernel, K1 is the Gaussian kernel, K2 is the Ephanetchnikoff kernel, 
K3 is the triangular kernel, K4 is the Bartlett-Priestley-Ephanetchnikoff kernel and K5 is the bi-
quadratic kernel. 

The Ephanetchnikoff kernel K2 minimizes the integrated square error (MISE=Min Integrated 
Square Error). 

( ) ( )ˆ ˆ
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where ( )ˆxMSE h  is the minimum square error (MSE=Min Square Error; see [8,10]): 

( ) ( ){ }2ˆ ˆ( ) ( )xMSE h E h x h x= − .       (3’) 

The bandwidth must be chosen such that lim 0nn
b
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=  and lim nn
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= ∞  [8,10]. In this paper we consider 

1
nb

n
=  and we obtain: 

( ) ( )( )
1

1 n

i
i

f x K n x X
n =

= ⋅ −∑ .       (1’) 

Therefore we can compute the cumulative density function using the formula 
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where K  is the corresponding cdf of the kernel pdf K. 

The confidence interval with threshold ε  of a cdf F is built using the following procedure [1]: 

1) We determine fist the confidence interval ( ),st dr  such that ( )
2

G st ε
=  and ( ) 1

2
G dr ε

= − , 

where G is the cdf Beta, having the parameters 1m +  and n m− , ( )1,m n mβ + − . 

2) The confidence interval becomes ( ) ( )( )1 1,F st F dr− − . 

The above parameter m is ( )1n ε⎡ ⎤−⎣ ⎦ , i.e. the integer part of ( )1n ε− , and n is the volume of the 
sample [1]. 



2. Methodology 

In order to determine the quantiles of various orders stored into array, we generate 10000 
variables of type kernel by means of the compound method [9]. To generate one of these 
variables we use the equation (4) and we generate a random number k, uniformly distributed on 
{ }n...,,2,1  and then we generate X with cumulative distribution function kernel translated 

with kX  and scaled according to the bandwidth window n . 

For the Bartlett-Priestley-Epanecinikov type kernel or biquadratic type kernel we generate a 
random variable with probability density function K  using the inverse method [9]. For the 
Epanecinikov kernel type one should multiply the result of the case Bartlett-Priestley-
Epanecinikov with 5 . 

In [2] one simulation was performed for each quantile threshold for kernel-type distributions. 
But because there is the possibility to have a reversal of monotony through successive 
simulations (for different thresholds, but close), we made one simulation for all quantiles in the 
list. For the Gaussian kernel we can use different methods for generating normal variables [9]. 
We use the Box-Müller method because it is the most rapid. After we sort ascending the values, 
then the ε-quantile is on the position ( )[ ]ε−110000 ,where ( )[ ]ε−110000  is the integer part of 

( )ε−110000 . 

The quantiles level of trust given by the start and end is determined according to the above 
method. 

Using the kernels mentioned in the previous section we can not capture the phenomena of 
asymmetry, or of  heavy tail. For instance, in the case of the last kernel, the difference between 
the quantile is practically negligible. In order to avoid this drawback, we use the Pareto kernel, ie 
Pareto distribution density (a, b, c), c = 0, [6] 
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The calibration of parameters a and b was done as follows. First we generated 1001 pairs ( )ba,  
with values in the mentioned intervals. For each pair we computed the coefficient of 
determination [3,4] 
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where m
e
ip

Q  are the sample values having the corresponding non-exceedance probabilities e
ip , 

calc
e
ip

Q  are the quantiles of the level e
ip  (computed using the previously presented methodology), 

and e
ip

Q  is the average of m
e
ip

Q . 

After ordering the sample values, e
ip  is computed using (7) for some types of empirical 

distributions used in hydrology. 
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The parameters a and b are chosen such that the coefficient of determination 2R  is maximum. 

3. Application 

Consider 85 maximum annual discharges recorded on the Danube in the region Budapest. For 
the Pareto kernels we estimate the maximal pair ( ),a b  such that a belongs to successive intervals 
( )5, 0.25− − ; ( )0.25, 0− , and b belongs to successive intervals ( )0, 100 ; ( )100, 500 ; ( )500, 1000 ; 
( )1000, 5000 ; ( )5000, 10000 . We obtain some results for which 2 0.95R > . Table 1 contains the 
results of the calibration of parameters for the Pareto kernel, after processing the data for the 
types of the above empirical distributions. 

Table 1 

The calibration of the parameters for the Pareto kernels 

Type Interval for a Interval for b a b R2 

Weibull (-5,25) (0,100) -1.04759 12.73232 0.99996 

Weibull (-5,25) (100,500) -0.41888 122.05878 0.99949 

Weibull (-5,25) (1000,5000) -0.30784 1098.63582 0.95799 

Hazen (-5,25) (100,500) -0.38815 100.79348 0.99969 

Hazen (-5,25) (500,1000) -0.36148 546.38813 0.98832 

Hazen (-5,25) (1000,5000) -0.30799 1017.82281 0.96174 

Cegodaev (-5,25) (0,100) -0.35263 1.37638 >0.99999 

Cegodaev (-5,25) (1000,5000) -0.31146 1011.96326 0.95606 

Blum (-5,25) (1000,5000) -0.3535 1103.64086 0.9248 

Tuckey (-5,25) (1000,5000) -0.368 1051.39317 0.95275 

Gringorten (-5,25) (1000,5000) -0.30001 1077.51701 0.96077 

Even if we obtain good results for 2R in the case ( )a 0.25,0∈ − , we consider for kernels the other 
case, in order to capture the ''heavy tail'' phenomenon. 

We estimate the quantiles and the confidence interval for p 10%= , p 1%= , and p 0.01%= .  In 
order to take into account the estimator of b, we obtain using the method of the moments [7] 



b=1243.99617, and in Table 2 we consider only the cases ( )a 5, 0.25∈ − −  and ( )b 1000, 5000∈ . 
By the values of a we capture the “heavy tail” phenomenon, and the above estimated value of b 
belongs to the interval. 

 

Table 2 

Quantiles and confidence intervals for thr Pareto kernels 

Pareto parameters The threshold of the 
quantile

The value of the 
quantile

The interval for the 
quantile 

(-0.30784,1098.63582) 

10% 7433 (7199,7798) 

1% 8716 (7700,11176) 

0.1% 9816 (7505,11176) 

0.01% 11176 (7402,11176) 

(-0.30799,1017.82281) 

10% 7417 (7149,7764) 

1% 8686 (7704,14475) 

0.1% 9340 (7490,14475) 

0.01% 14475 (7387,14475) 

(-0.31146,1011.96326) 

10% 7462 (7235,7897) 

1% 8712 (7826,14061) 

0.1% 9510 (7558,14061) 

0.01% 14061 (7416,14061) 

(-0.3535,1103.64086) 

10% 7470 (7255,7908) 

1% 8748 (7863,21435) 

0.1% 10507 (7563,21435) 

0.01% 21435 (7421,21435) 

(-0.368,1051.39317) 

10% 7461 (7227,7898) 

1% 8748 (7870,20245) 

0.1% 10042 (7570,20245) 

0.01% 20245 (7418,20245) 

(-0.30001,1077.51701) 

10% 7429 (7163,7844) 

1% 8679 (7743,14626) 

0.1% 9974 (7497,14626) 

0.01% 14626 (7392,14626) 

We notice that we have a decreasing of the quantile with respect of the threshold, as we 
expected. We can say the same thing about the limits of the confidence intervals β for the above 
quantile, until the threshold of 1%. For lower threshold the lower limit increases on threshold, 



and the variance of the right limit remains the same, but the decrease becomes very slow. The 
next graphics (in the case a 0.30784= − , b 1098.63582= ) is suggestive in this regard. 

An explanation of changing of variance for the left limit of the interval consists in the fact that 
the parameters of the distribution Beta stabilize at a = 85 and b = 1. From the fact that we 
determine the quantiles for the same distributions, the variance of the limits of the confidence 
interval results. 

 
Fig. 1 – The graphics of the quantile and of the limits of confidence intervals, depending on the threshold. 

For the right limit of the confidence interval for the quantile we notice a convergence of the 
value to the value of the quantile with the threshold of 0.01% (1 in 10000). This is due to the fact 
that we have generated 10000 kernel-type random variables, and the right limits for the Beta 
distribution are higher than 0.9999. That is why all the values are greater than the maximum 
generated value. 

Comparison of the Values Obtained by Classical Analysis 

By classical statistical inference we have obtained the following confidence intervals (Table 3) 
Table 3 

Confidence intervals using classical statistical inference, and the volume of the sample 85 

The exceedance 
probability 

The value of the 
quantile 

Confidence interval for the 
quantile 

10% 7294 (6916, 7667) 

1% 8553 (7961, 9390) 

0.1% 9270 (7961, 9390) 

Comparing the values of the quantiles and the confidence intervals from Table 3 with the similar 
values in Table 2, we notice that by using the Pareto kernel functions we capture better the heavy 
tail behavior. For the remaining probability values, both quantiles’ values and confidence 
intervals are very close in terms of specialists in hydrology. 

4. Conclusions 

Since, on the one hand, the values of the quantiles and confidence intervals are very close to the 
probabilities of exceedance values covered by the current hydrological analysis, and secondly 
that it eliminates the need for a priori choice of a distribution function based on an extremely 



reduced statistical selection. One can conclude that the approach using the kernel functions is 
entirely appropriate to this type of hydrological statistical analyzes. 
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