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Abstract: An empirical formula based on evolutionary regression network is proposed in this paper 
for predicting the equilibrium depth of scour around bridge piers. The formula expresses the 
equilibrium scour depth as a function of variables including flow depth and mean velocity, critical 
flow velocity, median grain size and pier diameter. The empirical formula is developed by training 
and testing an evolutionary network using scour data available in the literature. The use of the 
evolutionary algorithm in developing the formula is informed by the need to reduce the model 
complexity while sacrificing its predictive accuracy. The results of performance comparisons with 
existing models showed that the proposed formula model produces reasonably accurate estimates 
of equilibrium scour depth with a much smaller number of fitting constants compared with back-
propagation neural networks. 
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1. Introduction  

Design of bridge piers requires an accurate estimate of the worst scour depth around 
their foundations. The aim is to take adequate preemptive measures to prevent bridge failures 
caused by local scour around piers and abutments, which over the years caused loss of lives and 
resulted in damages and replacements worth millions of dollars. In order to provide guidance to 
practicing engineers, experimental studies have been sponsored by various agencies in order to 
have a better understanding of the process involved in the development of scour hole around 
piers. Out of these studies, a number of empirical formulae were developed, which include the 
models proposed by Laursen and Toch [1], Shen [2], Hancu [3], Breusers et al. [4], USDOT [5], 
and Melville and Chiew [6]. In Table 1 below, descriptions of some of these approaches are 
given in summary. The major reason for resorting to empirical correlations for scour depth 
estimation is the highly complicated nature of fluid-soil –structure interaction involved in the 
formation scour, which makes it quite challenging to develop an analytical or numerical model 
that can help in accurately predicting the depth of scour holes.  

Despite the adoption of the aforementioned empirical formulae, their inability to 
adequately simulate the interaction of various factors that contribute to the evolution of 
scour hole raises a serious concern regarding their reliability. This is evidenced by the 
large prediction errors recorded when the estimates of the formulae are compared with the 
independent experimental data [8].    
In order to address the prediction difficulties associated with existing empirical methods, the use 
of machine learning techniques has been explored over the last decade in developing models 
based on of experimental data accumulated over the years for scour depth predictions. The works 
of Lee et al [7], Bateni et al [8] and Ismail et al.[9] are part of this effort. Other relevant works 
include studies by Akib et al. [10], Chou et al. [11], Pang et al. [12] and more recently Ebtehaj et 
al. [13]. The overall conclusions of these studies are that neural networks successfully managed 
to produce accurate estimates to scour depths when tested against independent scour data. They 
were also found significantly surpass the existing scour prediction formulae in terms of accuracy. 
The success recorded by neural net predictors can be attributed to their ability to explore 
complex behaviours of systems without having to make apriori assumptions about the how the 
systems behave. Their key drawback, however, is that they are based on so large a number of 
constants that end users may not find them convenient to use.  
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Table 1 

Some of the currently available models for predicting scour depth 
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 where k1, k2, k3 and k4 

are, respectively, correction coefficients accounting 
for pier nose shape, attack angle, bed condition and 
armouring.  

[6] 
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where kyD =  flow depth coefficient; kI = pier width 
coefficient and kd = sediment size coefficient.   

This study focuses on developing a neural network model based on evolutionary training 
algorithm that pays attention not only to the prediction accuracy but also to the complexity of the 
network topology. The aim is to investigate the possibility of generating out of the optimised 
network a relatively simple but reasonably accurate formula for predicting the equilibrium scour 
depth around bridge piers.  

2. Self-evolving network 

Self-evolving networks are neural network variants whose training involves simultaneously 
optimising the synaptic weights and the network architecture. This type of network evolves 
automatically from the simplest topology consisting of a single hidden processing unit at the 
initial stage of training to a more complicated network depending on the complexity of the 
studied system. The self-evolution training algorithm involves the use of jumping particle 
optimization technique in updating the network topology while a combination of continuous 
version of particle swarm optimization (PSO) technique and method of least squares are used in 
fine-tuning the network constants. The algorithm helps reduce the user intervention while 
building the models by allowing the network structure to develop as the training progresses. The 
main advantage of the algorithm over the conventional neural network training is the production 
of more transparent and robust relationship between the inputs and the estimated parameter. 

In this paper, scour data is used to develop an evolutionary network model, which is then used to 
generate a user-friendly formula for estimating the equilibrium depth of scour hole around 
cylindrical piers installed in a non-cohesive river bed.   

2.1 Jumping particle swarm optimization (JPSO) 

JPSO is a technique for handling combinatorial optimisation problems proposed by Matinez-
Garcia Moreno-Perez [14]. The method is in some ways similar to the discrete particle swarm  
optimisation (DPSO) [15] with respect to the gravitation of particles towards more favourable 
positions. The key distinction between the two methods is that in the case of JPSO, the concept 
of “flying” is abandoned in favour of “jumping”, considering the discrete nature of the search 
space. The concept of jumping particle is based on the idea that in a discrete space a particle can 
only change its co-ordinate by jumping to a feasible position from the current one. Jumping to 
another position could be influenced by particles best experience, global most favourable 
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position, as well as their desire to explore unknown regions in the search space. The set of 
discrete parameters representing the co-ordinates of jumping particles are modified stochastically 
based on the influence of the above-mentioned factors. Eventually, regardless of the influencing 
factors, the particle jumps to the new co-ordinate only if it results in gaining some advantage 
over the current one. JPSO technique is implemented based on the following equation:  

1 1 2 3t t
  


     C C b gb

       
(1)  

where tC and 1tC  are the vectors of present and next particle positions in the combinatorial 

search space respectively.   denotes the multiplication of a vector by a scalar, while  refers to 
vector addition. The coefficients λ1, λ2 and λ3 are probabilities of random jumping, jumping 
towards the best particle co-ordinate and jumping towards best swarm position respectively. b 
and gb represent the particles’ best and global most favourable co-ordinates respectively. The 
position updating implemented based on following scheme: 
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(2) 

ρ is a binary random number and Px is the probability that the particle jumps towards a particular 
direction. The * operation is executed by adjusting the topology of a given  particle 
stochastically with some of the features of its attractor in a situation where it is attracted by either 
b or gb. If the particle, by chance, chooses to do an unguided jump, its topology will be modified 
by a randomly generated set of discrete parameters. 

JPSO was successfully applied in some combinatorial optimisation problems including p-median 
problem [14], minimum labelling Steiner tree problem [16] and gear train benchmark problem 
[17]. In both [14] and [17], JPSO and the discrete version of PSO (DPSO) were compared, with 
the former returning better result in both cases.  

2.2 Self-evolution training algorithm  

Development of neural networks is a challenging task entailing not only optimising the weights 
of the synapses but also the architecture. The most challenging aspect of topology design is the 
control of the size of the network. Too many links and nodes will lead to redundancy and poor 
generalization. On the other hand, using insufficient neurons will lead to the inability of the 
network to extract the necessary information from the training data. The training algorithm used 
in this study attempts to tackle this challenge by optimizing the topology and unit weights at the 
same time. It involves carrying out the topology optimisation based on the JPSO technique and 
synaptic weight fine-tuning based on a combination of particle swarm optimization and the least 
squares methods. This algorithm handles neural network training as a mixed integer optimization 
problem, where a combination of discrete and continuous parameters is selected for maximum 
performance. To enhance computational efficiency, the algorithm is developed based on a 
bottom-to-top strategy, where the networks begin with single neuron at the hidden layer, then 
gradually develop into more complex topologies as they interact with the knowledge base during 
the training session. The first stage of the proposed self-evolution procedure involves generating 
a certain number of networks, each having a randomly generated synaptic links and synaptic 
weights. The binary connection parameters Ci,j assume a value of 1 if the link between two nodes 
i and j exists and 0 otherwise (refer to Figure 1). In the course of training, the binary connection 
parameters are adjusted based on the jumping particle swarm optimisation algorithm, while the 
synaptic weights pi,j of connections between the input nodes and the non-linear hidden nodes are 
updated using the continuous PSO algorithm. With the output node being represented by a linear 



29 

model, the weights of connections to the output node, represented by wi,j, are optimised using the 
method of least squares. 

 

Fig. 1 - Topology of a Self-evolving Network 

The size of the networks is gradually increased by adding more internal nodes, one node at a 
time. At the point of such nodal increment, only the information regarding the current particles 
best experience is retained by reducing the values of additional synaptic weights to zero and 
disconnecting the additional links. For the rest of network population, the synaptic weights and 
topologies are randomly reset. The rationale of retaining best results so far is to preserve the 
acquired knowledge as the optimisation process goes on while resetting the particle positions 
will help to avoid a premature convergence as the dimension of particles increase. The training 
algorithm is summarised as follows: 

1. Randomly generate a population of N neural networks with single nodes in the hidden layer. 
Each network shall consist of a randomly generated set of connection parameters C and 
weights of synapses p.  

2. Determine the synaptic weights w using the least squares method and evaluate the fitness of 
each network and update the best local and global fitness values and co-ordinates. 

3. Use PSO/JPSO procedures to adjust the network topologies and weights for a certain number 
of iterations in accordance with the following steps:  

- Use the PSO algorithm to adjust the synaptic weight vector p of each particle (network). 
- Use the JPSO algorithm to adjust the connection parameters, C, of each particle 

(network). 
- Update the best local co-ordinate and the best global co-ordinate. 

4. If sufficient convergence is achieved then go to 8. Else move on to 5.  

5. Randomly reset the binary connection parameters and of duplicate particles (networks). Also, 
reset in the same manner the binary link switching parameters of certain fraction of the 
network population with poor fitness values. Go to 3. 

6. If iterations number is not up to the maximum number go back to step3. Else move on.  

7. Generate N networks (particles) with a number of internal nodes that is greater than the 
current number by one node. Replace all current networks with newly generated ones  while 
retaining the global best co-ordinates (topology and synaptic weights). Go back to step 3. 

8. Stop the algorithm and return result. 
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The algorithm is also summarised by the flowchart in Figure 2. To assist the population (swarm) 
of partially connected neuro-nets in the search for optimised network, a parallel swarm of fully 
connected neuro-nets but with the same number of hidden nodes is trained at the same time, with 
the former learning from the later whenever the best performing network lies in the latter.  

 

Fig. 2 - Network training flow diagram 

2.3 Transfer function  

The ability of networks to carry out a successful data mining depends significantly on the 
selection of transfer function type. For a given system, some transfer functions produce more 
accurate results with smaller network sizes than others. In this work, the product-unit function  is 
used as a model for the hidden nodes in the network. Product-units process the products of 
weighted inputs they receive in contrast to summation units like sigmoid neurons. The choice of 
this function is informed by its greater information capacity, which tends to reduce the required 
number of hidden nodes [18]. The function is represented by the following expression:  

  ,

1

i j

i n
p

i

i

f x x




 
         (3) 

Randomly Generate Networks (with one hidden node)

Update network connection weights using PSO  & LSM 
and  topology using JPSO for a  number of iterations

Reset the position of duplicate particles

Stop 
Y

N

Y

cycle=1

cycle = cycle+1

Evaluate fitness to  update best networks

N

N

Create network population with one more hidden node

Memorize best network configuration

Replace old population with new population bur retain global best

YN

Update networks using PSO/LSM and JPSO for a  number of iterations

Acceptable accuracy?

Acceptable accuracy?

cycle = cyclemax?
Number of hidden 
nodes maximum?

Replace old population with new but retain global best data



31 

where n is the number of input variables. xi and pi,j are the input signals and the synaptic weights 
respectively. i is the input variable identifier, while j is the hidden node number. For instance j=2 
refers to hidden node number 2. Thus pi,j is the exponent of xi when the latter serves as input to 
hidden node j. In this work, the p values are limited to a range between -3 to +3 in order to 
prevent over-learning. Also for the sake of obtaining a relatively simple expression for the 
subsequent empirical model, the values of exponent weights, p, are rounded up to the nearest 
0.25. It is important to remember, as indicated in Figure 1, that there are also direct links from 
the input nodes to the output representing the linear parts of the model, the strengths of which are 
optimized using the method of least squares.       

3 Proposed model for scour depth prediction  

3.1 Input parameters  

The ability of neural networks to make reasonable predictions depends on how well the selected 
input parameters represent the factors controlling the behaviour of the studied system. The 
problem concerned in this study is the about the estimation of the scour depth around circular 
pier embedded into a uniform and cohesion-less river bed (see Figure 3). The factors controlling 
the depth of scour hole include the pattern of fluid flow, the properties of bed sediment, and the 
pier geometry [19]. The equilibrium scour depth can be expressed in terms of various controlling 
variables as:  

 50
, , , , , , ,

se c
fd U Y g d U D 

       (4) 
in which ρ and μ are, respectively, the density and dynamic viscosity of the fluid. U and Y are 
the average velocity of approach and the depth of flow respectively. g , d50, Uc and D are the 
acceleration due to gravity, the median diameter of bed sediment, the critical velocity 
respectively and the diameter of the pier. The eight independent parameters in Eq. (4) excluding 
density and viscosity can be lumped into a set of five dimension-less variables enclosed in the 
bracket in Eq. (5) as suggested in [19].  
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In this study, the network is trained to predict the normalised scour depth based on Equation (5). 
The tanh() transformations of the inputs are also added as inputs to the network to facilitate a 
reduction in the number of network constants. The use of non-dimensional parameters in this 
work is informed by the need to do away with scale effects on the predicted quantity. It is 
noteworthy that Equation (5) satisfies the Buckingham pi theorem [], as it comprises of solely 
non-dimensional parameters. For instance, U and Uc are of the same dimension (LT-1), therefore 
U/Uc is dimension-less.  

 

Fig. 3 - Scour around a circular pier 
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3.2 Database description 

The database compiled for this work is the same scour data used by Bateni et al. [8], which 
consists of scour depth measurements for a given flow velocity, pier diameter,  median particle 
size and depth of flow. The database comprises of 269 data points covering a wide range of pier 
diameters, regimes of flow and median particle sizes. The summary of characteristics of the 
database is given in Table 2. 

Table 2 

Database statistical properties 

  Input parameter 

  dse (m) D (m) d50 (mm) U (m/s) Uc (m/s) Y (m) 

μ 124.08 197.87 1.525 0.3897 0.431,8 126.48 

σ 77.99 219.40 1.353 0.2409 0.1737 97.22 

xmax 440.00 1000.00 7.80 1.50 1.25 600.00 

xmin 4.00 10.00 0.20 0.17 0.19 20.00 

3.3. Network training and testing 

To develop the proposed model, the database was divided into training and testing sets. 
Approximately 42% of the database (113 data points) was used for the sake of training, while the 
remaining 58% of the data were reserved for testing. The reason for allocating nearly half of the 
data for testing is to ensure a more robust assessment of the model’s accuracy given the limited 
number of data points. In order for the network to capture the widest variations in input and 
output patterns in the database, the maximum and minimum values in the database are included 
in the training data. This is to avoid having extreme data points in the testing set, which could 
undermine the assessment of true generalization capability of the model. For the sake of 
comparison, conventional back-propagation network with a transfer function based on a 
combination of sigmoid and linear activation functions was also trained using the same data. The 
self-evolving network was trained in accordance with the optimisation algorithm described in 
subsection 2.1. To guard against over-learning and unnecessary network complexity, the learning 
criterion is based on the cost function proposed in [21], which penalises both topology 
complexity and inaccuracy in prediction. The key advantage of this method over alternative 
approaches such as weight decay method is that the former focuses on minimising the number of 
links in the network rather than decreasing the magnitude of the synaptic weights, which often 
doesn’t help in reducing the network complexity. Other metrics used in assessing the prediction 
accuracy of the proposed model include the non-dimensional root mean square error (N-RMSE) 
and the coefficient of determination (R2). 

N-RMSE  is defined by the following expression: 
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The coefficient of determination is defined as: 
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   (7) 
where Oi, yi and Orms are, respectively, the experimental value, the predicted value, and the root 
mean square value of the observed data. 
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4 Results and discussions  

4.1 Training and testing results 
The training and testing results of the proposed model are displayed in Figures 4(a) and 4(b) 
respectively. As the figures showed, the predictions of the network are in a good agreement with 
the scour data, given the reasonably high value of R2 in both cases of training data (R2 = 0.856) 
and the testing data (R2 = 0.810). This is indicative of success of the learning process undergone 
by the networks not only because the network parameters are fine-tuned enough to yield a good 
approximation of the experimental observations, but more importantly because of the ability of 
the networks to produce estimates of scour depth comparison with the data that was not part of 
the training set. The results presented so far are based on 215 data points. The remaining 53 
points are considered as outliers, considering the huge difference (at least 100%) between the 
measurements and the predictions of various methods considered in this work. They are 
therefore excluded from training and testing data sets.  

The prediction accuracy of the proposed model is further examined by plotting the values of 
residuals (predicted value less the actual value) against the test data (see Figure 5). It can be seen 
from the figure that the data points are highly scattered around the horizontal axis and no clear 
trend can be identified. This suggests that the prediction errors are more likely to be as a result of 
noise rather than model shortcomings.  

 
a 

 
b 

Fig. 4 - Comparison of proposed model predictions with experimental observations 
(a) Training set and (b) testing  data set 

 

Fig. 5 - Residuals versus testing data 
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4.2 Parametric study  

The parametric study is meant to assess the conformity of model predictions with the underlying 
behaviour of the system studied. The task is carried out by adopting a commonly used technique 
[22,23], which entails varying the subject variable between the minimum and the maximum values 
in the database while keeping the rest of the input variables to values around the average. In this 
way, the desired variables are investigated, one at a time. The results of the study carried out on the 
proposed model by varying the ratio of median sediment size (d50) to pier diameter and the ratio of 
flow depth (Y) to pier diameter (D) are plotted in Figures 6-7. The figures showed that the proposed 
model behaved in accordance with the known relationship between the scour depth and its 
controlling factors [19a]. The consistent decrease in the predicted scour depth (per unit with of pier) 
with increment in median particle size in Figure 6 indicates a good agreement between the estimates 
of the proposed model and the expected response of sand bed, where the eroded quantity is 
inversely related with the particle size. The positive variation of non-dimensional scour depth with 
normalized flow depth (Y/D) observed Figure 7 is also a rational response by the model as it is in 
tandem with the current knowledge regarding the mechanism of scour hole evolution.   

Sensitivity analysis has also been carried out to study the strength of the effects of various input 
parameters on the proposed model. To test a given parameter, it is disconnected from the 
network and the prediction quality of the model is assessed. The results of the analysis are 
summarized in Table 3, which indicated that all input parameters considered in this model 
significantly affect the prediction quality of the developed model. 

 

Fig. 6 - Variation of non-dimensional equilibrium scour depth with d50/D (× 10-3) 

 

Fig. 7 - Variation of non-dimensional equilibrium scour depth with Y/D  

Table 3 

Results of sensitivity study  

Excluded parameter N-RMSE (testing) 
None 0.2235 
d50/D 38.200 
U/Uc 2.116 
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4.2 Comparisons with existing models  

Based Previous studies [8,9], the existing empirical models, despite varying in complexity as Table 
1 showed, generally suffer from large prediction errors when compared with experimental data. In 
this section, the prediction quality of the proposed model in estimating the equilibrium scour depth 
is further assessed by comparing its results are compared with that of the back-propagation (BP) 
neural network as well as some of the empirical models available in the literature. From the results 
presented in Table 4, it is clear that the BP network produces less accurate estimates with respect to 
testing data than the proposed model despite using a far greater number of constants (60). In 
previous works based on Artificial Neural Network (ANN), a greater accuracy was reported but at a 
cost of a large number of parameters. For instance, the models developed by Bateni et al.[8] and 
Ismail et al.[9] have 128 constants and 70 constants respectively. With 17 constants, the proposed 
model is clearly much less complicated than both the models developed in [8] and [9]. The existing 
empirical models summarised in Table 1 produced much less accurate results than both BP network 
and the proposed models with the Hancu’s model [3] being the worst predictor (R2 = 0.3247). The 
inferior prediction quality of conventional formulae seen here corroborates the findings of the 
previous researches on the subject [8,9,24,25].  

Table 4 

Prediction results of various methods 

 Model type No. of constants N-RMSE (testing)  R2 (testing) 
Proposed formula 17 0.2235 0.8100 
BPN model 60 0.3057 0.7084 
Laursen and Toch [1] - 0.3615 0.6408 
Hancu [3] - 0.7259 0.3247 
US DoT [5] - 0.4901 0.4947 
Melville and Chiew [6] - 0.3382 0.6804 

In summary, the proposed model turns out to be the best among the models tested, having 
returned the least prediction error with a relatively small number of constants. The following 
formula represents the selected model:  
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The parameters k1, k2 and k3 are defined as follows: 
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where d50 is in mm; D and Y are in m; U and Uc are in m/s.   

5 Conclusions 

Self-evolving network training algorithm was used to build an empirical model for estimating the 
equilibrium depth of scour around circular piers. The choice of training algorithm is based on the 
desire to produce a model capable of making reasonably accurate scour predictions with a relatively 
small number of constants. The proposed model is based on experimental data comprising of a broad 
range of pier diameters, median particle sizes and flow depths and velocities.   
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Based on the results obtained, the proposed formula correlates better with validating 
experimental data than BPN network and existing formulae for scour depth predictions. The 
formula also benefits from much fewer constants in comparison to the BP networks.   
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