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Abstract: The Fourier sine transform method was implemented in this study to obtain general 
solutions for stress and displacement fields in homogeneous, isotropic, linear elastic soil of semi-
infinite extent subject to a point load applied tangentially at a point considered the origin of the half 
plane. The study adopted a stress based formulation of the elasticity problem. Fourier 
transformation of the biharmonic stress compatibility equation was done to obtain bounded stress 
functions for the elastic half plane problem. Stresses and boundary conditions expressed in terms of 
the Boussinesq-Papkovich potential functions were transformed using Fourier sine transforms. 
Boundary conditions were used to obtain the unknown constants of the stress functions for the 
Cerrutti problem considered; and the complete determination of the stress fields in the Fourier 
transform space. Inversion of the Fourier sine transforms for the stresses yielded the general 
expressions for the stresses in the physical domain space variables. The strain fields were obtained 
from the kinematic relations. The displacement fields were obtained by integration of the strain-
displacement relations. The solutions obtained were identical with solutions in literature obtained 
using Cerrutti stress functions. 

Keywords: Fourier sine transform method, elastic half plane, Boussinesq-Papkovich potential 
functions, biharmonic stress compatibility equation, stress fields, displacement fields 

1. Introduction 

The problem of finding stress and displacement variations within an elastic half plane due to 
point or distributed loads applied to the surface or inside the half plane belongs to the classical 
mathematical theory of elasticity and can be considered a two dimensional (2D) specialization of 
the elastic half space problem [1, 2, 3, 4, 5]. Such elastic half plane and half-space problems 
have extensive applications in the analysis and design of foundation structures, pile foundations, 
and geotechnical engineering [6, 7]. The elastic half plane/space material may be considered 
isotropic or anisotropic, homogeneous or heterogeneous, linear elastic or non-linear elastic. In 
general, the characterisation of the half plane material determines the complexity and rigour of 
the elastic half plane problem. Anisotropic, heterogeneous, non linear elastic half plane problems 
are usually very complicated, and rigorous in both formulation and their solution. The type of 
load also determines the complexity and rigour of the elastic half plane/or half-space problem; 
and gives rise to several types of the half space problem. When the load is a point load applied 
inside the elastic half space, the problem becomes a Mindlin problem. For point load applied 
vertically at the origin (0,0,0) of the elastic half space, the problem is called the Boussinesq 
problem. The Cerrutti problem is concerned with a point load applied tangentially in the x – 
direction at the origin of an elastic half plane or half space. The Boussinesq, Mindlin and Cerrutti 
problems are fundamental problems in that their solutions can be used as Green functions to 
generate solutions for distributed loads on the half plane or half space. 

The elastic half plane and half-space problems are formulated by the use of the fundamental 
equations of elasticity theory; namely: the differential equations of equilibrium, the material 
constitutive laws and the six strain displacement relations (also called the geometric relations of 
strain) subject to the compatibility equations and the traction and deformation boundary 
conditions. The number, type and complicated nature of the governing field equations of the 
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elastic half space theory for a rigorous mathematical formulation and analytical solution are quite 
unwieldy and involve extensively intensive and rigorous advanced mathematical methodologies 
for analysis and solution [8].Hence, three basic methods have been used in order to provide a 
simplified formulation of elasticity problems. They are: the displacement method, the stress 
method and the mixed method [9, 10, 11].  

In the displacement based methods, the three sets of fundamental requirements of the differential 
equations of equilibrium, the generalised Hooke’s stress – strain laws, and the kinematic 
relations are reformulated in terms of the displacement components as the only unknown primary 
variables. This leads to a reduction in the number and complexity of the governing field 
equations from a set of 15 equations in terms of both stresses, strains and displacements to a set 
of three coupled equations in terms of the three displacement components. The displacement 
formulation was presented by Navier, Love, Lame, Boussinesq, Papkovich and Cerrutti. 

In stress based elasticity problem formulations, the set of fifteen partial differential equations 
involving equilibrium, geometric relations and material constitutive laws are simultaneously 
reformulated such that unknown strains and displacements are eliminated from the expressions, 
and the Cauchy stresses become the only unknown primary variables [9 – 11]. This has the merit 
of reduction in the member and complication of the governing field equations for three 
dimensional problem from fifteen to six equations in terms of the three components of normal 
stresses and the three components of shear stresses. Stress based formulations of elasticity 
problems were presented by Michell, Love, Boussinesq, Papkovich, Beltrami, Airy, Morera, and 
Maxwell. The mixed formulation expresses the governing field equations in reformulated form 
in terms of some components of the Cauchy stress and some displacement components; as the 
primary unknown variables [12, 13]. 

This work employs the stress based formulation approach. The mathematical simplifications offered 
by the reformulations of the general elasticity problem have resulted in the derivations of stress and 
displacement functions that apriori satisfy the governing equations in stress based and displacement 
based formulations [10, 11, 14]. The stress and displacement functions provide more simplifications 
to the solutions of elasticity problems to the problem of finding suitable stress and displacement 
functions that satisfy the boundary conditions of traction, loading and displacement for the 
particular problem. This thus reduces the dimensionality of the general problem of the mathematical 
theory of elasticity; particularly for the half plane and half space problems. 

In this work, the Boussinesq – Papkovich stress (displacement) potential functions are used in 
the method of Fourier sine transformation to determine the stress fields and displacement fields 
in a half plane due to a point load Q0 acting at the origin and tangentially applied in the positive 
x-direction. This problem was first solved by Valentino Cerrutti who considered a linearly elastic 
isotropic half space region subjected to the action of a concentrated load acting at the origin and 
applied tangentially to the boundary surface 0.z   Padio-Guidugli and Favata [12] considered a 
variant of the Cerrutti problem where a distributed tangent load is applied with constant 
magnitude per unit length and with infinite length. 

2. Research aim and objectives 

The research aim is to implement the Fourier sine transform method for solving the Cerrutti 
problem of point load tangentially applied to the origin of an elastic half plane. 

The objectives are: 

i. to present a stress formulation of the Cerrutti problem of elastic half plane as a 
biharmonic differential equation in terms of stress potential functions. 
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ii. to apply the Fourier transform to the biharmonic stress compatibility equation, and obtain 
bounded stress functions for the Cerrutti problems of the elastic half plane. 

iii. to express the stresses and strains in terms of the stress functions and obtain the stress 
fields and strain fields in the Fourier sine transform space. 

iv. to use the boundary conditions and obtain the unknown constants of the stress function. 

v. to apply the inverse transformation to the stresses and strains in the transform space and 
obtain the stresses and strains in the physical domain space variables. 

3. Research problem: The Cerrutti’s problem in two dimensions (xz plane) 

The Cerrutti’s problem in two dimensional (2D) space is the problem of determining the stress 
fields and displacement fields at any arbitrary point ( , )A x z  or ( , )A r   due to a single tangential 
point load of magnitude Q0 acting at the origin (0, 0) on the surface of a linear elastic half space 
material (soil) of semi-infinite extent in the Cartesian coordinate (x, z) space, where ;x     

0;y   0 .z    The problem is illustrated graphically in Figure 1. 

 
Fig. 1 –  Cerrutti’s problem of the elastic half plane 

The point load Q0 is assumed to act in the direction of the positive x-axis as shown in Figure 1. r 

and  are radial and tangential coordinates of the 2D polar coordinate system, and 2 2 2,r x z   

tan
z
x

  .  

4. Theoretical framework 

Formulation of the Cerrutti problem using Boussinesq-Papkovich displacement potential 
functions 

We define the Boussinesq-Papkovich displacement potential functions ( , )x z  and ( , )x z  as 
scalar fields of the coordinates of the two dimensional (2D) Cartesian space, from which the 
displacements are derivable as follows: 

1

4 1
( , ) ( , ) ( , )

( ) xu x z x z u x z
x

 
 

  
  (1) 

1

4 1
( , ) ( , ) ( , )

( )zw x z u x z x z
z


   
  

  (2) 

where xu u  is the displacement field component in the x direction, zw u  is the displacement field 

component in the z direction; and  is the Poisson’s ratio of the elastic half plane material (soil). 
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Elastic half plane problems satisfy simultaneously the fundamental equations of elasticity namely: 
strain – displacement relations (kinematic relations), Hooke’s generalised stress – strain equations, 
and the differential equations of equilibrium together with the boundary conditions [3 – 5, 15]. 

Strain fields 

For infinitesimal (small) displacement assumptions in the theory of elasticity, the normal and 
shear strain fields xx, zz and xz are found from the strain displacement relations of the theory of 
small displacement elasticity as follows: 

2

2

1 1

4 1 4 1( ) ( )
x

xx
u

xx x x

                 
  (3) 

1

4 1( )
z

zz
uw

zz z z

                
  (4) 

2

2

1

4 1( )zz z z

  
  

   
  (5) 

 
zx x

xz
uu u w

z x z x

  
    

   
  (6) 

1 1

4 1 4 1( ) ( )xz x zz x

                     
  (7) 

21

2 1( )xz x x z
  

  
    

  (8) 

21 1
2 1

2 4 1
( )

( )xz xz
x z x

                
  (9) 

Stress fields 

The generalized Hooke’s stress – strain laws expressed in terms of Lamé’s constants are used to 
find the stress fields for plane strain conditions. The stress – strain laws are: 

2xx xx vG       (10) 
2zz zz vG       (11) 

2xz xy xyG G       (12) 

where v is the volumetric strain, xx and zz are normal stresses, xz is the shear stress, G is the 
shear modulus. 

 is the Lamé’s constant given by: 

2

1 2

G
 

 
  (13) 

The volumetric strain v can be obtained in terms of the Boussinesq-Papkovich functions as: 

1 2

2 1( )v z
  

 
  

  (14) 

Then, the stress fields are obtained in terms of the Boussinesq-Papkovich harmonic functions as: 

2

2

2

2 1 2 1( ) ( )xx
G G

zx

    
  

    
  (15) 

2

2
2

2 1( )xx
G

zx

           
  (16) 
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2

2

1
2

14 1( )
zz

G
G

zz z

              
  (17) 

2

2
2 2

2 1
( )

( )zz
G

zz

            
  (18) 

2

2 1
2 1

( )
( )xz
G

x z x

              
  (19) 

We observe that the Boussinesq-Papkovich displacement potential functions  and  can also be 
termed stress potential functions since the stress fields are also derivable from the functions by 
Equations (16), (18) and (19). 

5. Results 

Stress formulation of the boundary value problem 

The governing partial differential equation for the elasticity problem involving the half plane is 
given by the stress function formulation which is a biharmonic equation in ( , )x z  as: 

4 2 2 0( , ) ( , )x z x z         (20) 
where ( , )x z  is the stress function which must be bounded within the half space region; and 

4 2 2      (21) 
2 is the Laplacian operator 
4 is the biharmonic operator. 

2 2
2

2 2x z

 
  

 
  (22) 

2 4 4 42 2
4

4 2 2 42 2

2

x x z zx z

               
  (23) 

Solution for a suitable stress function 

We seek a solution for a suitable stress function by solving the biharmonic equation for ( , )x z  
subject to the boundary conditions and boundedness requirements. We apply the Fourier sine 
transformation with respect to the x-coordinate to the biharmonic equation to obtain: 

4 4 4

4 2 2 4

1
02

2
Re ikx dx

x x z z






                 (24) 

4 4 4

4 2 2 4

1
02

2
sin kx dx

x x z z





                 (25) 

2 4
4 2

2 4
2 0

d d
k k

dz dz

 
      (26) 

where k is the Fourier transform parameter (also, the Fourier sine transform parameter). 

Where 
1

2
( , ) ( , ) ikxk z x z e dx






    
    (27) 

or ( , ) ( , ) sink z x z kx dx




     (28) 
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( , )k z  is the Fourier transform of the stress function or the Fourier sine transformation of the 
stress function. 

Equation (26) is a fourth order ordinary homogeneous differential equation in ( , )k z . 

Solution using the method of trial functions, D operator techniques or auxiliary polynomial 
methods yield the solution as: 

1 2 3 4( , ) ( ) exp( ) ( ) exp( )k z c c kz kz c c kz kz        (29) 
where c1, c2, c3 and c4 are the four constants of integration. 

For bounded stress functions, ( , )k z should be bounded and definite as .z    This is satisfied 
only when  

c3 = 0 (30) 

and,            c4 = 0 (31) 

Thus, 

1 2( , ) ( ) exp( )k z c c kz kz     (32) 

1 2( , ) ( ) kzk z c c kz e    (33) 

The Boussinesq-Papkovich stress (or displacement) potential functions in the Fourier transform 
space can then be defined as: 

2( , ) kzk z c ke   (34) 

and ( , )k z  given by Equation (33). 

Application of the Fourier sine transformation 

The Fourier sine transformation is applied to the Boussinesq-Papkovich potential functions 
already obtained in the Fourier transform space, to obtain: 

1 2

0

( , ) ( ) sinkzk z c c kz e kx dk


    (35) 

2

0

( , ) sinkzk z c ke kx dk


    (36) 

where 1 1( )c c k  (37) 

2 2 ( )c c k  (38) 
0 k    

and k is the Fourier integral sine transform parameter. 

Similarly, the Fourier sine integral transformation is applied to the boundary conditions to yield: 

0 0( , )zz x z    (39) 

0

0 0( , ) sinzz x z kx dk


    (40) 

00( , ) ( )xz x z Q x     (41) 

0

0 0( , )sin ( , )xz xzx z kx dk k z


      (42) 



7 

 

0

0

1

2
( ) cosQ x kx dk



 
   (43) 

0

0

cos
Q

kx dk


 
   (44) 

Application of the Fourier sine integral transformation to the stress fields yield: 

2

2
0

2
2 1

( , ) sin
( )xx
G

k z kx dk
zx


    

    
     (45) 

2

2
0

2 2
2 1

( , ) ( ) sin
( )zz

G
k z kx dk

zz


    

          (46) 

2

0

2 1
2 1

( , ) ( ) sin
( )zxzz
G

k z kx dk
x z x


    

     
       (47) 

where ( , ), ( , )xx zzk z k z   and ( , )xz k z  are the stress fields in the Fourier sine transform space. 

Substitution of expressions for  and  and evaluation of partial derivatives yield, after 
simplification: 

2
1 2

0

2
2 1

( , ) ( ) ) sin
( )

kz
xx

G
k z c kz c k e kx dk


     

    (48) 

2
1 2

0

2 1
2 1

( , ) ( ( ( ) ) ) sin
( )

kz
zz

G
k z c kz c k e kx dk


     

    (49) 

2
1 2

0

0 2 1
2 1

( , ) ( ( ) ) sin
( )zz
G

k z c c k kx dk


     
    (50) 

2
1 2

0

1 2
2 1

( , ) ( ( )) cos
( )

kz
xz

G
k z c c kz k e kx dk


     

    (51) 

2
1 2

0

0 1 2
2 1

( , ) ( ( )) cos
( )xz
G

k z c c k kx dk


     
    (52) 

0

0

cos
Q

kx dk


 
   (53) 

2
1 2

0

1 2
2 1

( ( )) cos
( )
G

c c k kx dk


   
    (54) 

Enforcement of boundary conditions 

Application of the boundary condition on xx  and xz  at 0z   yield the system of two equations 

in terms of the constants c1(k) and c2(k) as follows: 

1 22 1 0( )c c     (55) 

2 0
1 21 2

2 1
( ( ) )

( )

QG
c c k


   

  
 (56) 

Solving using the method of elimination, 

1 22 1( )c c     (57) 
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2
0

2 21 2 2 1
2 1

(( ) ( ) )
( )

QGk
c c


     

  
 (58) 

2
0

2
2 1

( )
( )

QGk
c


 

  
 (59) 

0
2 22

2 1( )
( )

Q
c c k

Gk

 
 


 (60) 

Then, 
2

0
1 1

4 1( )
( )

Q
c c k

Gk

  
 


  (61) 

The constants of integration are now completely determined. The Boussinesq-Papkovich stress 
functions are thus completely determined as: 

2
0 0

2 2
0

4 1 2 1( ) ( )
( , ) sinkzQ Q kz
k z e kx dk

Gk Gk


     

   
    (62) 

0
2

0

2 1 2 1( ) ( )
( , ) sinkzQ kz
k z e kx dk

G k


         

    (63) 

The stresses are found as: 

0

0

2( ) sinkz
xx

Q
kz e kx dk




  
   (64) 

23 3 2
0 0 0
4 2 2 2 2

2 2 2
1

( )
xx

Q x Q Qx z
xr x z x


 

       
    

 (65) 

0

0

sinkz
zz

Q
ke kx dk




 
   (66) 

222
20 0 0

4 2 2 2 2

2 2 2
1

( )
zz

Q Q Qxz x x
xz

zr x z z


            
     

 (67) 

0

0

1( ) coskz
xz

Q
kz e kx dk




  
   (68) 

22 2 2
0 0 0
4 2 2 2 2 2

2 2 2
1

( )
xz

Q x z Q Q zx z z

r x z x x


  

      
    

 (69) 

The stresses are the same as the stresses found for the same problem by Bryant [16]. 

Strains 

The strains are obtained as follows: 
2

0
2 2

0

2 11 2 1

4 1

( ) ( )
sin

( )
kz

xx
Q kz

e kx dk
Gx k




                   
  (70) 

0

0

2 1
2

( ( ) ) sinkz
xx

Q
kz e kx dk

G




    
   (71) 

2 2
0 0
2 2 2 2 2 2

1 1
( )

xx
Q x Qz x z

GGr r x z x z

    
                 

 (72) 
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0 0

0 0

2 1 2 11
2 1 2

4 1

( ) ( )
sin ( ( ) ( )) sin

( )
kz kz

zz
Q Q

e kx dk kz e kx dk
G G

 
           

    
 (73) 

0

0

2
2

( ) sinkz
zz

Q
kz e kx dk

G


   

   (74) 

2 2
0 0

2 2 2 2 2 2( )
zz

Q x Qz x z
GGr r x z x z

   
               

 (75) 

0 0

0 0

2 1 2 11 1
2 1 1

4 1 2

( ) ( )
( ( ) ) cos cos

( )
kz kz

xz
Q Q

kz e kx dk e kx dk
G G

 
  

     
     (76) 

0

0

1
2

( ) coskz
xz

Q
kz e kx dk

G




  
   (77) 

2 2
0 0

4 2 2 2( )
xz

Q x z Q x z
GGr x z

 
  

 
 (78) 

Displacement field 

The integration problem involved in finding or solving for the x component of the displacement 
field (ux) from the Boussinesq-Papkovich definition of the displacement potential function 
namely Equation (1) would result in a divergent integral. 

However, the x component of the displacement field ux is obtained from the simultaneous 
application of the expressions for xx and the strain – displacement relation. Thus, we obtain the 
problem: 

0

0

2 1
2

( ( ) ) sinkzx
xx

u Q
kz e kx dk

x G


 

     
  

 (79) 

0

0

2 1
2

( ) ) sinkz
x

Q
u kz e kx dk dx

G




    
 

 (80) 
Integration of Equation (80) with respect to the variable, x over the interval (0, x) yields: 

0

0 0

0 2 1
2

( , ) ( , ) ( ( ) ) sin
x

kz
x x

Q
u x z u z kz e kx dx dk

G




    
    (81) 

 0

0

1
0 2 1

2

cos
( , ) ( , ) ( ( ) ) kz

x x
Q kx

u x z u z kz e dk
G k


 

    
   (82) 

2 2
0 0

2 2 22 2
2 1 1 2 1 1

2 2
( , ) ( ) ln ( ) ln

( )
x

Q Qz z z z
u x z

G r Gr x zx z

     
                       

 (83) 
 

2 2
0 0

2 2 22 2

1 1
2 1 1 2 1 1

( ) ( )
( , ) ( ) ln ( ) ln

( )
x

Q Qz z z z
u x z

E r Er x zx z

      
                    

2
0

2 22 2

1
2 1

( )
( ) ln

( )

Q z x
E x zx z






 
     

  (84) 
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Similarly, from 

0

0

2
2

( ) sinkzz
zz

u Q
kz e kx dk

z G




    
    (85) 

0

0

2
2

( ) sinkz
z

Q
du kz e kx dk dz

G


  

   (86) 

Integration with respect to z yields: 

0

0 0

0 2
2

( ) ( , ) ( ) sin
z

kz
z z

Q
u xz u z kz e kx dk dz

G


   

    (87) 

0

0

1 2
2

sin
( )

kzQ e kx
kz dk

G k

 

   
   (88) 

1 10 0
2 2 2

1 2 1 2
2 2

( , ) ( ) tan ( ) tan
( )

z
Q Qx xz x xz

u x z
G z G zr x z

                      
 (89) 

 

1 10 0
2 2 2

2 1 2 1
1 2 1 2

2 2

( ) ( )
( , ) ( ) tan ( ) tanz

Q Qx xz x xz
u x z

E z E zr x z
                     

 

 (90) 

 

1 10 0
2 2 2

1 1
1 2 1 2

( ) ( )
( , ) ( ) tan ( ) tanz

Q Qx xz x xz
u x z

E z E zr x z
                     

  (91) 

 

where, 2 2 2r x z   

6. Discussion 

In this study, the Fourier sine transformation method has been successfully implemented to solve 
the problem of point load Q0 acting at the origin O and applied tangentially in the positive x-
direction to an elastic half plane; commonly called the Cerrutti problem. The soil occupying the 
half plane region was assumed homogeneous, isotropic and linear elastic. Stress based 
formulation of the half plane problem was used. The Boussinesq-Papkovich potential functions, 
defined as Equations (1) and (2) were used to express the strains as Equations (3), (5) and (8). 
The stresses were similarly expressed as Equations (16), (18) and (19). 

The method of Fourier transformation or Fourier sine transformation was applied to the 
biharmonic stress compatibility equation to obtain the solution for the stress functions as 
Equation (29). Boundedness criteria was applied to obtain bounded stress function as Equation 
(33) and (34). The Fourier sine transform was similarly used to obtain the stress fields in the 
Fourier sine transform space as Equations (45 – 47). The stresses were obtained in the Fourier 
sine transform space in terms of the Boussinesq-Papkovich stress functions as Equations (48), 
(50) and (51). Boundary conditions of stresses at 0z   were used to find the unknown constants 
of the stress functions as Equations (60) and (61). This led to the complete determination of the 
stresses as Equations (65 – 69). The strains were obtained as Equations (71 – 78). Displacements 
were obtained by integration of the strain displacement equations, as Equations (84) and (89). It 
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was observed that the expressions obtained for the stresses and displacements are identical to the 
solutions found in the technical literature. 

Conclusions 

The conclusions of the study are as follows: 

i. The Fourier sine transform method is an effective technique for solving the Cerrutti 
problem for a linear elastic, isotropic homogeneous half plane. 

ii. The Fourier sine transformation operation simplifies the governing stress compatibility 
equation, which is a fourth order biharmonic partial differential equation (PDE) in terms 
of the stress function to a linear fourth order ordinary differential equation with constant 
coefficients; which is more easily amenable to analytical solutions than the previously 
untransformed biharmonic equation. 

iii. The Boussinesq-Papkovich stress potential function formulation of the Cerrutti problem 
simplified the solution process to finding suitable functions that solve the biharmonic 
stress compatibility equation, and simultaneously satisfied the traction and boundary 
conditions as well as the boundedness requirements for stresses and displacements. 
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