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Abstract: The rainfall-runoff transformation is a highly complex dynamic process and the 
development of fast and robust modelling instruments has always been one of the most important 
topics for hydrology. Over time, a significant number of hydrological models have been developed 
with a clear trend towards a process-based approach. The downside of these types of models is the 
significant amount of data required for building the model and for the calibration process: in 
practice, the collection of all necessary data for such models proves to be a difficult task. In order 
to cope with this issue, various data-driven modelling techniques have been introduced for 
hydrological modelling as an alternative to more traditional approaches, on the basis of their 
capacity of mapping out complex relationships from observation data. Having the capacity to 
generate meaningful mathematical structures as results, genetic programming (GP) presents a high 
potential for rainfall-runoff modelling as a data-driven method. Using ground and radar rainfall 
observation, the aim of this study is to investigate the GP technique capability for modelling the 
rainfall-runoff process, taking into consideration a flash-flood event. 

Keywords: rainfall-runoff modelling, genetic programming, data-driven models, flash-flood, radar 
rainfall estimates  

1. Introduction 

Used for various tasks, both in offline (e.g. scenario analysis) and online mode (e.g. forecasting), 
hydrologic and hydraulic models have become key instruments in river catchment management, 
serving as support for the planning and decision-making process. The evolution in the 
development of rainfall-runoff (R-R) models went through different stages and according to the 
accepted hydrological classification there are three main categories of the R-R models: 
distributed physically based, lumped conceptual and empirical models. As a basic differentiation 
between the R-R models, the first two types of models usually imply the use of full or partial 
mathematical description of the physical processes which govern the hydrologic cycle (e.g. 
Système Hydrologique Européen - SHE model, Nedbør-Afstrømnings-Model, abbreviated as 
NAM model), whereas the empirical models make use of mathematical expressions (equations) 
derived from analysing the time series without any knowledge of the hydrological process (e.g. 
ARIMA models, linear regression models). The developments of various techniques from fields 
such as machine learning made possible, in the last two decades, the broadening of the 
hydrological modelling capabilities by empirical methods. Due to their abilities to identify 
relationships between input and output variables of a system (e.g. meteorological and 
hydrological data respectively), the collection of the new empirical methods employed for 
hydrological applications is known as data-driven modelling [1].   

One of the most use data-driven techniques developed in machine learning and applied for 
hydrological modelling are the artificial neural networks (ANNs). These black-box models have 
the ability to map out existing relationships between a set of input and output variable and have 
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been suggested as efficient instruments for R-R modelling [2], [3] or [4]. The main issue with 
ANN is given by its black-box nature from which no insight or interpretation can be extracted 
regarding the underlying mechanisms of the analysed process.  

Another technique that presents high potential in hydrological modelling is genetic programming 
(GP) [5], which can be catalogued as a population-based metaheuristic search algorithm. Using 
search mechanisms inspired from biological evolution and genetics is the latest addition to the 
family of others evolutionary computation (EC) techniques such as evolution strategies (ES), 
evolutionary programming (EP) and genetic algorithms (GA). Also referred to as symbolic 
regression, GP technique has the capacity to generate mathematical expressions suited to link 
input and output data. By generating functional mathematical structures, GP method has an 
advantage when compared to black-box or traditional regression models, in the sense that GP 
solutions can possible retain some physical meaning of the analysed process. Being a relatively 
recent technique its application in R-R modelling [6], [7], [8]  occured on a smaller scale 
compared with ANNs. 

Beside the progress of empirical modelling techniques, the developments of observation methods 
such as remote sensing or radar technology are providing new ways of determining the useful 
parameters for meteorological and hydrological application. The weather radar has become one 
of the most important instruments in identifying and forecasting rainfall position and intensity 
over an area. Due to the good spatial representation of rainfall, radar products are of great 
importance for rainfall-runoff modelling, particularly in catchments with a low density of 
ground-based monitoring network. In addition, if the analysed catchment has a fast response that 
can generate flash-flood events, radar products can deliver more reliable information about 
rainfall spatial distribution and intensity than the monitoring network.   

In this paper a study focused on using the GP algorithm for developing mathematical structures 
able to simulate the R-R process with an event-based approach is presented. The main objective 
is to investigate the GP capabilities to generate, via symbolic regression, expressions that can be 
employed to simulate a flash-flood event measured in Bahluet watershed at Targu Frumos gauging 
station using three different types of data as input to the algorithm. The input datasets are based on 
ground rainfall measurements, radar rainfall observations and rainfall volumes derived from radar 
data [9]. The goal of using different input data is to identify which of them leads to better results 
with GP. As a general rule in R-R modelling, a better representation of the rainfall over the 
catchment will generate improved results but it may be possible that this aspect will not have a 
significant weight with symbolic regression technique. In order to present to PG algorithm some 
insight about the catchment the rainfall volumes were used. Rainfall volume contains aggregated 
information about the area of the catchment and the rain intensity. Based on this, it was supposed 
such type of data will deliver superior results with symbolic regression method.  

2. Method  

2.1 Genetic programming 

Developed by Koza in the early 1990, GP is a type of evolutionary algorithm (EA) which has the 
ability to automatically solve a given problem without requiring in advance explicit knowledge 
regarding the solution’s form or structure [10]. Similar to all EAs, GPs are based on an 
abstraction of the natural selection principles and genetic recombination. The basic cycle of GP 
algorithm starts from an initial population (randomly created) that gradually evolves by selecting 
the fittest individuals (candidate solutions) based on their performance (objective function). 
Using the genetic variation operators (e.g. crossover, mutation) new and improved individuals 
are obtained, replacing the existing solution in the population. 
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The GP underlying search strategy is derived from GA, but with differences in regard to the 
obtained solution and chromosome encoding. GA are mainly used in optimisation problems 
where the populations evolves towards the optimum value for a given set of model parameters 
and the chromosomes are usually encoded as binary strings. On the other hand, in GP the 
structure of the model (e.g. algebraic expression, hierarchical program) evolves simultaneously 
with its parameters, while the chromosomes are usually encoded as tree-structures.   

Representation 

The most typical representation of GP chromosomes comes in the form of syntax tree, created as 
a composition of functions from a function set and a terminal set. The terminal set usually 
consists of independent variables, applied as inputs to the problem, and constants that are 
commonly identified during algorithm execution. The function set consists of domain specific 
functions and depending on the problem at hand may include arithmetic operators (+, -, /), 
mathematical functions (log, sin, cos), Boolean operator (AND, OR, NOT), logical expressions 
(IF-THEN-ELSE), iterative functions (DO-UNTIL), or any other user-defined function [5]. The 
parse trees can be defined by depth and size. The tree size is given by the maximum number of 
nodes, and the depth is defined as the longest path from the root mode to an endpoint [5].  

In order to ensure mathematical validity of the symbolic expression represented by parse trees, 
the selected function and terminal set should satisfy the condition of “closure” and sufficiency” 
[5]. The closure property gives the ability to replace a subtree to another location in the same tree 
and also ensures a valid definition of functions for all possible combination of arguments. The 
case of division by zero is the most representative situation when closure property is not meet. 
This situation can be avoided by implementing various procedures (e.g. tree elimination) [5].    

The sufficiency property implies that the function and terminal sets should be defined in such 
manner that all possible composition determined by functions and terminals include at least one 
solution to the problem at hand [10]. When this property is not met, the algorithm can only 
develop approximations but not the exact solution [5]. Depending on the specific problems, there 
are cases where an approximation may be as useful as the solution itself.   

Fitness evaluation and selection 

Corresponding to natural selection principles, better individuals are chosen for building a mating 
pool, due to the fact that they contain useful components that can generate improved solutions. 
The selection process is driven by the fitness of population members as a measure of how good 
they perform in solving a certain problem. Using a fitness function (objective function) the 
accuracy of each individual is calculated as the difference between simulated and actual (target) 
values but, depending on the objective of the modelling problem different error metrics such as 
mean square error (MSE) or root mean-square error (RMSE) can be used [5]. The selection 
process works in a probabilistic manner, in which individuals with better fitness have a higher 
chance to pass important genetic features into next generations. It can be mentioned that the 
fitness function can also be used as a stopping criterion of GP algorithm, if a predetermined 
threshold value is defined.   

For the selection process, various selection strategies (e.g. fitness proportionate selection) 
developed within CE domain [11] are also used in GP, the most popular of them being the 
tournament selection method. In general lines, the tournament selection method works by 
randomly picking out a number of individuals (usually two) from the existing population. The 
fitness of each individual is compared, selecting as parent the one with best fitness. Due to the 
fact that only one individual is selected per tournament, the algorithm is applied multiple times 
until the desired number of parents for the mating pool is reached. Mathematical description of 
tournament selection method can be found in [12]. 
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Genetic operators 

For obtaining new population of symbolic expressions, the best individuals from the mating pool 
are transformed using genetic operators. The main genetic operators employed by GP algorithm 
are crossover and mutation. The crossover operator creates new offspring containing genetic 
material from two parents by swapping a randomly chosen subtree from one parent with another 
randomly chosen subtree from the other parent (fig. 1). This variation operator ensures the 
diversity of the population by promoting the best inherited features of different parents and is the 
primary tool for exploring a problem domain. The crossover operator is applied in a probabilistic 
manner using a predefined probability of crossover pc. 

 

Fig. 1 - Example of crossover in GP (after [10])    

The mutation operator performs by selecting one parent and modifying its structure by 
substituting a randomly chosen subtree with a randomly generated new subtree (fig. 2). The main 
advantage of this operator is that it ensures the diversity in the population due to the insertion of 
any functional subtree into a parent, that did not exist in the current population, whereas 
crossover can only insert already existing subtrees in the current generation. Similar to crossover 
the mutation operator is used based on a probability of mutation pm.  

 

Fig. 2 - Example of mutation in GP (after [10])   

The evolution process is applied over multiple generations, in a sequential manner, until a 
predefined termination criterion is satisfied (e.g. number of generations). Typically found in the 
generations developed closed to the algorithm termination, the individual that delivers the most 
accurate relationship for the modelled system is selected as the result generated by the algorithm.  

Symbolic regression  

Linear or nonlinear regression techniques are frequently employed for forecast purposes by using 
various relationships between independent and dependent variables. When regression techniques 
are applied, the structure of the model is selected in advance and can have different forms such 
as linear, polynomial or logarithmic expressions. The main objective in this approach is to 
estimate the model coefficients via an optimization technique, based on the available data. ANNs 
models can be grouped in the same class with nonlinear regression techniques. Similar to 
regression, the ANNs architecture must be selected in advances and only after a training process 
they can be used as models. There are two main drawbacks associated with these techniques. The 



   31 

first disadvantage is given by the difficulties in finding the optimal model structure (expression 
or architecture) that best reflects the analysed process. The second issue is that they deliver no 
insight regarding the underlying mechanisms of the analysed process. 

Having the ability to generate functional mathematical structures, GP is also regarded as type of 
regression technique, called symbolic regression [5]. GP has an advantage over conventional 
regression or ANN models because the specific model structure and its parameters are not 
selected in advance but are found during the search process. By generating functional 
expressions GP solutions may retain some physical meaning regarding analysed process. A 
drawback of this technique is given by the fact that it can generate bloated expression for which 
is virtually impossible to find any physical interpretation.  

2.2 Study area 

The study was undertaken for Bahluet catchment, situated in Iasi county, in the north-eastern 
part of Romania in Bahlui watershed. Located at the intersection of Moldavian Plain and 
Suceava Plateau, Bahluet catchment area is around 551km2, with an average elevation around 
250 m.a.s.l, a catchment slope of 7.4‰, while the length of Bahluet river is around 41 km. The 
main focus of the study was the upper part of Bahluet basin (fig. 3), with the closing section at 
Targu Frumos gauging station. The analysed area is roughly 66 km2 and the river has a length of 
21km. For Tg. Frumos gauging station the average multiannual precipitation has a value of 550 
mm/year and the average multiannual flow is 0.15m3/s.  

 

Fig. 3 - Bahluet basin map [9] 

The hydrologic regime of Bahluet river is characterised by low flows all year round, with increases 
in discharges in early spring due to snow melting and in last period of autumn due to rainfall. 
Usually, in summer months the watershed is affected by scattered short strong rain events which 
represent the dominant process in flood generation [9]. Based on historical measurements, the daily 
maximum values for precipitation are registered for storm events that occur during July and August; 
consequently, this is the period with biggest measured flood waves. Due to the fast response and 
short lag times, this sub catchment can be catalogued as a flashy [9]. 

Due to the fast response of the catchment and the lack of any other station upstream of Targu 
Frumos, the possibilities for early flood warning are limited, which makes this area to be of high 
interest [9] from hydrological point of view.    

2.3. Available data 

In line with study objective there were collected flow data, rainfall observation from gauging 
stations and radar rainfall estimates. For an event-based approach the collected datasets covered 
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two floods measured at Targu Frumos station. The first event occurred in 21.05.2014 and the 
second event was measured in 21-22.07.2014. All collected data were processed with a 10-
minutes time resolution. The limitation on the number of events used is due to a relatively recent 
implementation of radar rainfall technology in the studied area. As a result, there is a limited 
number of rainfall events observed by both radar and ground automatic station.    

2.3.1 Rainfall and runoff observation 

In Bahlui catchment there are 14 automatic stations, equipped with flow and rainfall measuring 
instruments, covering an area of approximately 2000 km2.  Due to location of the studied 
catchment close to the water divide, only 2 rainfall stations are representative for the area. 
Station Carjoaia is located in the neighbouring catchment, very close to the northern extremity of 
the area of interest (less than 5 km). Targu Frumos station is located at the closing section of the 
watershed and it takes observations for both flows and rainfall. The rainfall measuring 
instruments use the tipping bucket principle with a 0.1mm resolution and with 10-minute time 
resolution, the same time resolution as for runoff measurements. The automatic monitoring 
network was implemented in DESWAT project and data are officially controlled and verified by 
ABA Prut-Barlad (regional water basin administration) [9].   

 
a)                                                                                   b) 

Fig. 4 - Registered flood-waves at Tg. Frumos gauging station [9] 

The event of interest in this analysis is the one measured in 21.05.2014 (fig. 4-a) which presents 
the particularities of a flash-flood. The peak discharge had a value of 85,9 m3/s and the peak 
flood stage measured at Tg. Frumos station was 336 cm, exceeding the maximum flood 
threshold (peril level) defined for this section (330 cm) [9]. The flood-wave was caused by a 
short but strong rainfall that occurred in the most upstream part of the catchment. Because the 
rainfall was concentrated in the upper part of the basin, there were no rainfall observations at Tg. 
Frumos gauging station. Due to its location, the rainfall observations for this event were 
available only for Carjoaia gauging station. Based on rainfall measurements the lag time for this 
event was around 3.5 hours [9].  

The event observed in 23.07.2014 (fig. 4-b) had lower runoff values than the previous one but, 
according to the measurements it exceeded the flood warning level determined for Tg. Frumos 
gauging station (200 cm). The peak discharge had a value of 30 m3/s and the maximum observed 
water level was 202cm. The event was generated by a rainfall distributed over the whole basin, 
with rainfall measurements at both Tg. Frumos and Carjoaia gauging stations. 

2.3.2 Radar rainfall data 

For the analysed area, the radar rainfall estimates are generated by a weather radar station 
located in Barnova, Iasi County. The station uses a Doppler high-resolution S-band weather 
radar, taking observations at a 6-minute interval and the spatial resolution of the volume element 
is 1 km3 [9]. The weather radar station has a 230 km range and is situated about 46 - 65 km from 
the studied basin. 
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The rainfall rate is estimated using an empirical relationship that takes as input the radar 
reflectivity factor Z. 

bZ aR  (1) 

where R is the rain rate in mm/h, Z is the reflectivity factor in mm6/m3, and the coefficients a, b 
are empirical parameters. For Barnova weather radar station the value of the parameters varies, 
depending on the season; the summer the values of the parameters are a = 300, b = 1.4 while for 
winter period a = 200 and b = 1.6. [9] 

 

Fig. 5 - Example of radar rainfall image (May 2014 event) [9] 

The radar data for each of the events previously mentioned were collected from ABA Prut-
Barlad being generated by SIMIN system (National Integrated Meteorological System). The 
precipitation estimates are delivered as accumulated values over one hour. In fig. 5 an example 
of a processed radar image taken in 21.05.2014 at 17:00 hour is presented [9].   

2.4 Data processing for PG algorithm input  

In order to obtain the rainfall information necessary for the study, the radar files were pre-processed 
using GIS instruments. Radar rainfall data use a grid with 1km spatial resolution for providing the 
accumulated rainfall values. Applying this grid for extracting the rainfall data for the studied area 
leads to a very large input vector. In order to reduce the input vector, the solution of averaging the 
rainfall values over a coarser grid was adopted. Using a grid with 4km spatial resolution for each of 
the two events 12 rainfall time series with the same time resolution as the radar files (1 hour) were 
generated. The rainfall time series were extracted only for the cells intersecting the catchment area. 
In fig. 6 the extraction grid overlaid on the catchment surface together with an example of a 
hyetograph extracted for cell A1 (upper left cell of the grid) are presented.  

 
    a)      b) 

Fig. 6 - Extraction grid for radar rainfall data and hyetograph resulted for A1 grid cell [9] 
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As previously mentioned, the rainfall volumes determined from radar data were also used as 
inputs to GP algorithm. The volumes were computed using the rainfall obtained from radar files 
and the surface of 4km grid cells that intersected the studied catchment. Similar to previous case, 
were obtained 12-time series with a time resolution of 1-hour.  

Due to differences of time resolution of radar and ground rainfall measurements, the data sets 
were homogenised. The radar data were processed in order to obtain time series with a 10-
minute resolution, matching the automatic sensors observations. The time distribution for radar 
data was considered uniform over a one-hour interval. 

The ground and radar data were presented to GP algorithm in matrix form. The input vector 
determined by ground rainfall measurements was structured as matrix of 2 columns, representing 
Carjoaia and Tg. Frumos station and by n rows, representing the number of time steps for each of 
the events. The input vector obtained from radar data was structured in the same manner, using a 
matrix of 12 columns (representing the cells intersecting the basin) by the same time step number 
as ground measurements. For the grid cell or the stations with no rainfall zero values were 
implemented in the input vectors [9].  

3. Results  

As previously mentioned, the aim of the study was to assess the model induction capacities of PG 
algorithm to rainfall-runoff modelling for a Bahluet catchment. Three scenarios were analysed, 
generated by the use of tree different input vectors. For conducting the study, the open-source 
software package HeuristicLab was used, that has implemented various evolutionary and heuristic 
techniques, including a genetic programming algorithm developed for time series predictions. 

The symbolic regression for time-series prediction implemented in HeuristicLab allows the use 
of autoregressive target and the mathematical relationship can be generally expressed as:   

              1 1 1r qQ t f R t ,R t ,...,R t n ,R t ,Q( t ),Q t ,...,Q t n       
  (2) 

where R(t), R(t-1), …, R(t-nr) represent current and previous observations of the input vector 
(rainfall and volumes), Q(t), Q(t-1), …, Q(t-nq) are the current and previous measurements for 
the target variable (discharges), nr and nq are the maximum number of past values for input 
variables and targets and ε is the error term. In essence the expression (2) represents a nonlinear 
autoregressive model with exogenous inputs.  

For increasing the generalisation capacity, the datasets were split into training subset and testing 
subset with a 0.7 weight attributed for the training subset and the remaining 0.3 for the test subset.  

The parameters used by the PG algorithm in search of the model structure that best fit the input 
data are shown in table below: 

Table 1 

PG parameters used for training in all three cases 

PG parameters Used values 

Maximum symbolic tree depth  100 
Maximum symbolic tree length 500 
Function set +, -, *, /, EXP, LOG, SQRT, POW, 

lagged variables, Autoregressive variable 
Maximum generations  200 
Cross over probability 0.85 
Mutation probability  0.15 
Population size  100 
Number of past measured values 10 
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3.1 GP training 

For the training phase of GP algorithm was used the event observed in July 2014, because of the 
better spatial representation over the analised catchment. The performances of the induced 
expression generated via symbolic regression were evaluated using graphical method (observed 
vs. simulated hydrographs) together with goodness-of-fit coefficients. The goodness-of-fit 
measures used to evaluate the model’s prediction are root mean square error (RMSE) and 
coefficient of efficiency (CE). The former performance index gives quantitative information 
regarding the error of the models and the latter assess their predictive capacity. 

 

Fig. 7 - Simulated vs measured runoff hydrograph 
(July 2014) – ground rainfall observations  

(model A8L10)  

 

 

Fig. 8 - Simulated vs measured runoff hydrograph 
(July 2014) – – radar rainfall observations  

(model A41L286) 

 

Fig. 9 - Simulated vs measured runoff hydrograph 
(July 2014) – rainfall volume (model A47L400) 

  

Table 2 

Goodness-of-fit coefficients for model training 

 

 

All simulated flood waves (blue line), presented in the figures 7, 8 and 9, show an almost perfect 
agreement with the observed hydrographs (red line) with almost no perturbation affecting the 
results. In all training cases, the peak discharges are well captured in terms of value and time of 
occurrence, with the exception of the first hydrograph, that presents a delay of one-time step. 
The goodness-of-fit coefficients (table 2) presents more than satisfactory values, for all presented 
cases, suggesting good performances for all expressions identified with GP algorithm.  

The expressions induced by GP algorithm are labelled based on tree depth and length (e.g. the 
model A8L10 has a tree depth of 8 and a length of 10). For the first training case (ground rainfall 
measurements) a reasonable symbolic expression was obtained, regarding the number of used 
elements. For the other two cases the expressions are very large and are induced mainly by the 
dimension of the input vector, determined from radar data. The expression obtained for the first 
training (fig. 7) case is presented below:  

      0 1 21Q t log exp c Q( t ) c c  
  (2)

 

where c0=0.956, c1=1.02, c2=0.51. According to eq. (3), the algorithm generated the expression based 
only on discharge and leaving out any rainfall information. In general, the GP capacity to choose 
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only the most influential input variables and disregard other input data is seen as a beneficial property 
of the algorithm. However, by disregarding the rainfall and generating an autoregressive model based 
only on discharges, no real information can be extracted with respect to the influence of precipitation 
as the main mechanism of flood generation. Consequently, this model was not considered fit to 
simulate the rainfall-runoff process and was abandoned from further testing. 

Regarding the other two cases, due to the large dimension of the symbolic expression (fig. 10-
11), it is impossible to find any physical interpretation of the underlying process and the 
expression has the properties of a black-box model.  

 

Fig. 10 - Symbolic tree generated for radar rainfall 
estimates (model A41L286) 

 

 

Fig. 11 - Symbolic tree generated for radar 
precipitated volumes (model A47L400) 

3.2 GP Testing 

The validation of symbolic expression was done using the observed data for May 2014 event. 
The computed hydrographs are presented for the remaining two cases in the pictures below and 
the performance coefficients are given in table 3. 

 

Fig. 12 - Simulated vs measured runoff 
hydrograph (May 2014) – radar precipitation 

observations (model A41L286) 

 

Fig. 13 - Simulated vs measured runoff 
hydrograph (May 2014) – rainfall volume (model 

A47L400) 

Table 3 

Goodness-of-fit coefficients for model 
validation  
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The simulation of May 2014 event was the main objective of the study, due to its high discharge 
values and short lag time. Both simulated hydrographs (fig. 12-13) present a good agreement 
between observation and simulation. The peak discharge for simulated data was not reached, but the 
differences are acceptable, with a -6,75% difference for A41L286 model and a -4,55% for A47L400 
model. In this situation, the expression obtained with precipitated volumes as input to PG generates 
improved results. Beside the discharge error, for these two cases a phase error of one-time step is 
also present, that did not occur in the training stage. However due to time resolution used for the 
simulations (10 minutes the time step) the phase error in both cases is acceptable.  

The obtained results considering spatially distributed inputs are of great interest for hydrological 
forecasting purposes. Being able to use spatially distributed inputs obtained from radar products, 
GP algorithm can increase the lead time for flood predictions. 

4. Conclusions 

The aim of this study was focused on testing the GP capabilities in simulation a flash-flood using an 
event-based approach. Three different input data were employed in conducting the study, namely, 
ground rainfall measurements, radar rainfall data and rainfall volumes. In all three cases, GP was 
able to develop functional mathematical expression that led to acceptable results for all input data. A 
significant observation can be done regarding the mode of operation of the algorithm. The ability to 
select only some information and disregard other data from the input vector can be seen as 
beneficial, leading to optimal expression. However, for the case of ground rainfall observation, the 
algorithm placed a much greater emphasis on the target variable that led to a total disregard of 
rainfall data, generating an autoregressive model. Consequently, although the model developed for 
ground rainfall observations presented good simulated discharge values, it cannot be used for flood 
prediction since it is not using rainfall data and was abandoned for testing. 

For the cases where spatial distributed data were used, the expression induced with symbolic 
regression generated acceptable results. In contrast with the ground rainfall observations, there 
was less emphasis put on regressed variable and more towards the rainfall data. It can be noted 
that the composite variable, namely rainfall volumes, led to improved results compared to the 
results obtained only from radar rainfall estimates, in regard to the maximum simulated 
discharge. Also, it can be mentioned that for spatial distributed cases the GP algorithm generated 
bloated expression with a large number of components with no real possibility of extracting any 
physical interpretation of the underlying process. It can be considered that the mathematical 
structures generated in this situations function as a black-box model. Regarding the use of GP 
algorithm for hydrological forecasts applications, the results generated based on radar products 
inputs are of great significance, having the possibility of improving the lead time for flood 
prediction in small catchments.  
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