EVALUATION OF THE POUNDING FORCES DURING EARTHQUAKE USING EXPLICIT DYNAMIC TIME INTEGRATION METHOD

Open access

Abstract

Pounding effects during earthquake is a subject of high significance for structural engineers performing in the urban areas. In this paper, two ways to account for structural pounding are used in a MATLAB code, namely classical stereomechanics approach and nonlinear viscoelastic impact element. The numerical study is performed on SDOF structures acted by ELCentro recording. While most of the studies available in the literature are related to Newmark implicit time integration method, in this study the equations of motion are numerical integrated using central finite difference method, an explicit method, having the main advantage that in the displacement at the ith+1 step is calculated based on the loads from the ith step. Thus, the collision is checked and the pounding forces are taken into account into the equation of motion in an easier manner than in an implicit integration method. First, a comparison is done using available data in the literature. Both linear and nonlinear behavior of the structures during earthquake is further investigated. Several layout scenarios are also investigated, in which one or more weak buildings are adjacent to a stiffer building. One of the main findings in this paper is related to the behavior of a weak structure located between two stiff structures.

[1] Anagnostopoulos, S. A. (1988). Pounding of buildings in series during earthquakes. Earthquake Engineering and Structural Dynamics. 16, 443-456.

[2] Mate N. U., Bakre S. V., Jaiswal O. R. (2012). Comparative Study of Impact Simulation Models for Linear Elastic Structures in Seismic Pounding. Proceedings of the fifthteenth world conference on earthquake engineering. Lisbon, Portugal

[3] Mate N. U., Bakre S. V., Jaiswal O. R. (2014). Seismic pounding of adjacent linear elastic buildings with various contact mechanisms for impact simulation. Asian journal of civil engineering. vol. 16, no. 3, 383-415

[4] Jankowski R. (2004). Non-linear viscoelastic model of structural pounding. 13th World Conference on Earthquake Engineering Vancouver, Canada. Paper No. 3082

[5] Mahmoud S., Jankowski R. (2011). Modified Linear Viscoelastic model of earthquake-induced structural pounding. IJST, Transactions of Civil and Environmental Engineering. Vol. 35, 51-62

[6] Jankowski R. (2007). Theoretical and experimental assessment of parameters for the non-linear viscoelastic model of structural pounding. Journal of theoretical and applied mechanics. Vol. 4, 931-942

[7] Jankowski R., Mahmoud S. (2015) Earthquake-Induced Structural Pounding. Switzerland: Springer International Publishing.

[8] Salam S. A., Eraky A., Mottaleb H. A., Abdo A. (2015). Pounding Control of Structures Using Base Isolation. International Journal of Engineering and Innovative Technology (IJEIT). Vol. 4, Issue 9, 171-177

[9] Barros R. C., Khatami S. M. (2012). Seismic Response Effect of Shear Walls in Reducing Pounding Risk of Reinforced Concrete Buildings Subjected to Near-Fault Ground Motions. Proceedings of the fifthteenth world conference on earthquake engineering. Lisbon, Portugal

[10] Polycarpou P., Komodromos P. (2013) On the numerical simulation of structural pounding in three Dimensions. World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea

[11]Yang Y. , Li S., Xie L. (2008). Research on collision of beam-type structures based on hertz-damp model , The 14 th World Conference on Earthquake Engineering, Beijing, China

[12] Efraimiadou S., Hatzigeorgiou G. D., Beskos D. E. (2012). Structural pounding between adjacent buildings: The effects of different structures configurations and multiple earthquakes. Proceedings of the fifthteenth world conference on earthquake engineering. Lisbon, Portugal

[13]Arpitha K, Umadewi R., (2016). Effect of seismic pounding between reinforced concrete buildings. International Journal of Latest Trends in Engineering and Technology (IJLTET). Vol. 7 issue 2, 576-583

[14]Raheem S. E. A. (2006). Seismic Pounding between Adjacent Building Structures. Electronic Journal of Structural Engineering. Vol. 6, 66-74

[15]Ehab M., Salem H., Mostafa H., Yehia N. (2014). Earthquake Pounding Effect on Adjacent Reinforced Concrete Buildings. International Journal of Computer Applications. Vol. 106 ,No.9, 27-34

[16] Chopra A.K. (2007). Dynamics of structures. Pearson Education, [17] Goldsmith W. (1960). Impact. The Theory and physical behavior of colliding solids. London: Edward Arnold LTD

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 19
PDF Downloads 16 16 5