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1. FOREWORD 

Ever since the dawn of civilization Man has utilized natural energy sources. Apart from the 
muscular force of men and domesticated animals or from conversion of heat into useful work, 
which was not mastered until much later, the first of such sources to be harnessed on a 
widespread scale were -perhaps a surprising circumstance- those originated by momentum 
exchanges of fluid flows. Suffice it to mention: 

- in the case of gas flows, the wind energy captured by sailboats and by windmills; 

- in the case of liquid flows, the variations of momentum of local fields induced by 
controlled motion of immersed tools (oar-propelled boats); the variations of moment of 
gravitational forces realized in water-driven ‘hydrostatic’ machines (water mills); the 
pressure into velocity exchanges of external flow (action turbines), or the variations of 
moment of momentum, accompanied by pressure into velocity exchanges taking place 
inside internal flow, in rotating devices (reaction turbines). 

Obviously, the utilization of the impulse –or of the impulse moment– generated by such 
exchanges was in the beginning a purely empirical achievement. The understanding of the 
underlying physical dynamics, as well as the capability to interpret and represent such dynamics 
in mathematical terms, had to wait for the wonderful Newtonian synthesis which allowed a fast 
development of Fluid Mechanics in qualitative and quantitative terms through the parallel 
invention and subsequent progress of Calculus together with the symbolic modeling of continua. 

Let us here recall the two pillars of ISAAC NEWTON’s “Philosophiae Naturalis Principia 
Mathematica” which are of interest in the present context:  

………………………….. 
Second Principle: “Mutationem motus proportionalem esse vi motrici impressae, et fieri 
secundum lineam rectam qua vis illa imprimitur” 
Third Principle: “Actioni contrariam semper et aequalem esse reactionem: sive corporum 
duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi”. 
…………………………… 

From these two Principles it is but a relatively short step to desume that if a solid obstacle (be it a 
rigid or a deformable body, a fixed or a movable object) interacts with a fluid flow through an 
exchange of momentum (this last obviously intended as a vectorial quantity, so that the ‘mutatio 
motus’ could take place in amount or in direction, or both), this solid obstacle will receive an 
equal and vectorially opposed impulse. If the solid obstacle be a movable one, a suitable 
arrangement of mechanical links and degrees of freedom can produce a useful quantity of 
mechanical work.  

In the case of a sailboat, the motion is a translatory one and the useful work is spent in 
overcoming the passive resistance of the water to the relative motion of the boat; in the case of a 
hydraulic machine (turbine) the motion is the rotation of a ‘runner’ and the work received on the 
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rotation axis is spent (apart from a fraction absorbed by passive resistances, which is to be 
contained as effectively as possible) to generate mechanical power available for a variety of 
uses: milling and fulling in the most ancient applications, then forging and lifting of loads or 
fluids, and most recently for electric power generation. 

In this last case, which will form the object of the present analysis, the freedom of motion of the 
solid runner is the rotation around an axis which is fixed with respect to the Earth surface. From 
this circumstance there derive some interesting features of the fluid-dynamic transformations 
taking place inside the runner of a reaction machine, of which it is possible to analyze the 
kinematic and dynamic broad lines by way of suitable schematizations and simplifications 
embodied in an elementary conceptual model. In what follows, it will be shown that this line of 
thought can provide provoking insights on a possible definition, for reaction turbines of low 
specific speed, of a basic runner geometry aiming at obtaining an orderly internal flow and a 
satisfactory ‘best point’ efficiency of the energy exchanges. Of course these insights are not 
sufficient to actually design a viable turbine runner; indeed, the definition of the shape of an 
industrially satisfactory reaction turbine calls not only for a more sophisticated flow-dynamics 
modeling, but also for a host of considerations of different nature (technological, economical…). 
Nonetheless, the present drastically simplified approach will bring to the fore some interesting 
peculiarities of the general aspects of the runner internal flow, as e.g. the often overlooked 
duality between two apparently mutually exclusive characters thereof (though actually two 
complementary faces of the same reality). 

Let us now ask ourselves, ”What approaches can be followed in trying to set up a mathematical 
model of the internal runner flow ?” The most comprehensive means would appear to be the 
integration of NAVIER-STOKES differential equations, in a moving system of reference and 
with the appropriate boundary conditions. This approach is fraught with pronounced difficulties 
of implementation, even not considering the problem (only partially tackled in some of the most 
advanced computational codes of Fluid Mechanics) of the modeling of turbulence. Besides, its 
application requires that the runner geometry be completely defined beforehand, and in this 
sense it does not lend itself to a direct design methodology, but rather requires a trial and error 
procedure, starting with a tentative geometry defined on the basis of experience and analogy and 
then gradually modifying it by evaluating, and if need be correcting, the alterations in outcome 
produced by each successive stage of refinement. Obviously this is a costly, time-consuming 
process, to be carried out by experienced personnel. 

The present essay adopts the radically different assumption of a ‘perfect fluid’, in which the fluid 
is considered to be incompressible and inviscid, and its motion is assumed to be irrotational 
(with respect to a fixed reference frame) in the spaces between two adjacent vanes, the presence 
of vorticity being allowed only as indestructible filaments attached to the runner vanes and only 
free to slide along the vanes solid surfaces. In other words, the circulation around a closed circuit 
contained in an inter-vane space is taken to be zero, but it can be different from zero along a 
closed circuit encircling a vane. Moreover, the periodic disturbances caused by the passage of 
the (moving) runner vanes leading edges in front of the (fixed) distributor vanes trailing edges 
are altogether neglected (hypothesis of an infinite number of vanes). It will be seen that by self-
evident alterations in the sign of some basic global parameters of the model it is possible to adopt 
the same type of schematization also for centrifugal pumps. 

It will be shown that this approach gives the same global results as the elementary EULER 
theory of the reaction turbine; in addition it requires, to respect ‘appropriate’ boundary 
conditions, that the runner vanes be given a well–defined shape (which will be seen to depend 
only on the inlet and outlet angles). [The elementary, global EULER theory would instead be 
indifferent to the vane shape, i. e. it would give the same results for two runners having the same 
entry and exit angles, irrespective of the shape given to the vanes between runner entry and 
outlet, see Fig. 1a and Fig. 1b. In other words, the EULER theory implicitly assumes that the 
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internal flow be ‘perfectly guided’ by the vane shape, however this shape might be contorted 
between inlet and outlet, provided that the inlet and outlet angles be kept fixed. Obviously this is 
not physically acceptable, implying e. g. that the two vane shapes represented in Fig. 1a and Fig. 
1b would give the same results. In this sense the present approach, though still a highly 
simplified one, is seen to represent a progress with respect to the EULER global model, 
inasmuch as by imposing the compatibility of the inter-vane flow with the model premises it is 
possible to define a theoretically ‘acceptable’ vane shape, to the exclusion of other ones]. 

The model described in the following is, indeed, internally consistent with such a simplified 
‘circulatory’, perfect-fluid approach to the modeling of the internal flow in a reaction turbine or 
in a centrifugal pump. It will become clear that the approximations introduced in this model tend 
to be more acceptable for ‘radial’ machines. i.e. for Francis turbines of low specific speed. 
Though this kind of analysis cannot lead by itself to a realistic design procedure, it is endowed 
with an indisputable didactic and training value, enhancing a qualitative understanding of the 
physics of what happens inside the runner. 

 

Fig. 1a   Fig. 1b 

The angles  and  are the same in the two figures; the law of variation of the angle  with the radius  is 
different in the two cases. According to the EULER global model the two runner shapes would be equally 

acceptable. 

2. THE SIMPLIFIED 3D, PERFECT-FLUID MATHEMATICAL MODEL OF THE 
IRROTATIONAL FLOW INSIDE THE RUNNER OF A REACTION TURBINE 
(FRANCIS TYPE) OF LOW SPECIFIC SPEED 

In this section the reader is invited to visualize a runner with an array of  cylindrical vanes (the 
vane directrices being parallel to the rotation axis). The section of the vanes with planes normal 
to the rotation axis is defined by specifying the function , see Figs. 1a and 1b; the 
meridional runner section is defined by the function , see above-quoted figures. In 
subsequent algebraic developments, use is made of the product .  including a ‘transparency’ 
factor 1 expressing the ratio between the net passage section and the total cylindrical 
section. The runner is assumed to rotate with a uniform rotational speed  and is filled with a 
centripetal flow of a perfect, incompressible fluid. The total discharge traversing the runner, , 
is expressed by: 

(2.1) . . .  where  is a dimensionless discharge index,  is a reference radius  
(e. g. the radius  of the runner inlet) and  has the character of a non-dimensional discharge 
index.  

In order to simplify the developments, it is assumed that the axial depth of the inter-vane 

channels is given by . .
,  being a ‘transparency’ index taking into account the 

finite thickness of the runner blades. It is 1  with ≪ 1. 
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Moreover, to simplify things it is assumed that the runner is operating at its ‘best efficiency’ 
working point. Then with reference to Fig. 2 the absolute velocity at runner exit is radial and the 
velocity triangles should fulfill the following geometrical conditions: 

at runner inlet section, entry without shock of the relative velocity with respect to the vane inlet 
angle  ; 

. . . .

. . . .
cotan , or . . 1 .

. . .
cotan ; (2.2) 

‐ at runner exit section, outlet with radial absolute velocity, i. e.: 

.

. . .
. cotan 1     (2.3) 

 

Fig. 2 – Inlet and exit velocity triangles of a runner vane during steady rotation.  
Zenital view of the idealized runner and meaning of main symbols 

The following steps aim to build up a model of the internal flow in which the absolute motion 
inside the inter-vane space is irrotational. This assumption implies: 

a) that the vorticity of the relative flow (i.e. the flow as seen from a reference system rigidly 
rotating with the runner) be 2. , and  

b) that any vorticity be tied to the solid surfaces of the vanes, i. e. that in each inter-vane space 
there be no free vortex filaments. 

With reference to Fig. 2 the circulation Г  around a closed circuit enclosing a vane is seen to be, 
assuming an identical situation for each vane and neglecting the radial clearance between 
distributor and runner: 

Г
. . . . . .

. .
cotan     (2.4.I) 

and likewise at radius  , : 

Г . . .

. .
cotan    (2.4.II) 

In a mathematical model of the assumedly ‘generally irrotational’ absolute runner flow the solid 
obstacles represented by each vane can be replaced, as is well known, by a system of sources, 
sinks and eddies –‘singularities’ completely determining the flow field– suitably distributed 
along the ‘skeleton’ profile of the vane. The local intensity of these singularities is determined by 
the condition that the fluid velocity be everywhere tangential with respect to the vane surface. In 
accord with that, let us assume that each one of our  vanes is replaced by a distribution of 
eddies totaling the circulation Г  of Eq. (2.4) for each vane, while a diffused sink of discharge 

 absorbs the centripetal flow in the center. Then let us apply another well-known theorem of 
Perfect Fluid Dynamics (see e. g. Horace LAMB’s “Hydrodynamics”), stating that a vortex 
filament immersed in the motion field of a perfect fluid moves with a local (absolute) velocity 
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which is determined by all the singularities of the motion field. In the proposed model, it is 
assumed, in accord with the quoted theorem, that these singularities stay on the vanes ‘as if’ they 
were free and therefore were carried along in the general motion field.  

The combined fulfilling of these two constraints requires that: 

c) in the general ‘advection’ motion field generated by the centripetal discharge  and by the 
presence of the  vane-attached eddies, each single vane be the bearer of a macroscopic eddy of 
circulation Г . These eddies, regarded as ‘freely following’ the general motion, remain all the 
time tied to the skeleton profile of the respective vanes; any other hypothesis would, in fact, be 
tantamount to accepting a separation of the flow from the vanes, contrary to the assumption of 
‘best efficiency’ regime of the runner. 

d) the radial distribution of vorticity along each skeleton vane profile, given by: 

Г
 , where . Г ,  . Г   (2.5) 

remain unchanged during the motion. 

These conditions of our mathematical model will be henceforth denoted as the ‘self-replicating 
conditions’ of our idealized runner flow. It remains to express them in a form viable for 
obtaining further insights, in particular for the determination, if possible, of the plan shape of the 
vane radial ‘skeleton’ profile. To this end, it is necessary first of all to proceed from the 
foregoing developments towards the expression of the general advection motion field of point c) 
here above.    

With reference to Fig. 3 assume that the meridional section of the runner inner flow is contained 
between the two solid surfaces: 

0 (runner cover) and .  (runner ‘mantle’ or ‘belt’).  (2.6) 

The inter-vane flow field can be approximated by the superposition of two ‘generally 
irrotational’ components: 

a first, cylindrically symmetric flow field whose potential is expressed by: 

	 . . .
. .

. . . , where 
.

. .

.

.
,

      (2.7) 
giving the two components of velocity: 

. .
. . .     (2.8) 

(radial component of the first flow field) and 

.
. . .      (2.9)  

(axial component of the first flow field); see Fig. 3. 
 - a second, vortex-dominated (but still irrotational in the inter-vane spaces) flow field produced 
by a distribution of indefinite, rectilinear vortex filaments parallel to the runner axis and 
localized on the vane skeleton profiles, the distribution of vorticity along each of the  vanes 
being expressed, as per Eq.(2.5), as: 

Г
;     (2.10) 

this radial density of vorticity will be defined further on so as to comply with the self- replicating 
conditions, while its velocity components are evaluated as if at each radius  the  elementary 
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vortices of circulation .  were uniformly distributed over the circumference of radius , 
this last assumption being acceptable if  be sufficiently large (say of the order of 20). 

Therefore the approximated velocity components of the second field are evaluated as: 

. .
. .  for , circumferential component; (2.11) 

≅ 0 ,  ≅ 0 respectively radial and axial components.  (2.12) 
Let us point out that the radial velocity (2.8) of the first flow field is independent from , and that 
the radial velocity (2.12) of the second flow field is negligible if the number  of vanes is 
sufficiently high (see above), while its circumferential velocity (2.11) has been assumed to be 
approximately independent from , i. e. to be a function only of .	In this way an indefinitely 
extended total flow field is approximately described, by ‘cutting out’ a finite portion of it 
contained between cover and belt of the runner, i. e. between the surfaces: 

0 ,  
.

.

. . , , (since 
.

. .

.

.
) (2.13) 

The resulting motion field is adequate to represent, albeit in an admittedly approximated way, 
the inter-vane motion field inside a Francis-type runner of low specific speed with  vanes.  

Now two conditions remain to be expressed: 

- that the vortex total and local circulation is preserved during the general field motion 
(‘Vortex Conservation condition’, in short VCC), 

- that the distribution of vorticity along each vane skeleton profile is left unchanged during 
the general ‘advection motion’ (‘Self-Replicating Condition’, in short SRC). 

From the two conditions, recalling Eqs. (2.1) and (2.4.I), i. e. . . . , . Г

2. . . 2. . .

. .
cotan , it is straightforward to obtain the following two 

equations:  

. .
. . . . 	

. .. . .
, or [see (2.1)] 

. . .
.

3.cotan	 2. . . . 0     (2.14) 

. 0, or [see (2.8) and (2.12)] . . . . 0,  

       (2.15) 

Summing up: from . 0, i. e. ln . ln , so 

that: 

Г
. . . . . .

. .
cotan . . . ln

      (2.16) 

Г . . . . . .

. .
cotan	 . .  (2.17) 

 

Fig. 3 – Meridional section of the runner; radial and axial components of velocity 
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Indeed, from Eq. (2.15) it comes successively: 

. 0     (2.18) 

 and ln ln ,    (2.19) 

.   

Then from Eq. (2.14) 
. . .

. . 	

. . .
.  ; assuming [see Eq. (2.6)]: 

. .   

and for the shape of the skeleton vane profile: 

cotan	 . .

.
. 1 . .

. . .
. ln ,   (2.20) 

from which: 

cotan	 . .

.
	,     (2.21) 

cotan	
2. .

.
. 1

. .
2. . .

. ln  

cotan	 cotan	 . 1 . .

. . .
. ln   (2.22) 

NOTE: It is convenient to express the profile in polar coordinates , :  

cotan	 . . .

.
. 1 . .

. . .
. ln   (2.23) 

 
. .

.
. . .

. . .
. ln  

. .

.
. ln	 . .

. . .,
ln	

.
  (2.24) 

Moreover, from Eq. (2.16) it comes for the distribution of vorticity density  as a function of 
the local radius:  

. . .

. .
1 	

	

Г

. 	
    (2.25) 

For  0 (turbine) and for  0 (pump). 

3. THE MECHANICAL PERFORMANCE OF THE IDEAL TURBOMACHINE 
ACCORDING TO THE CIRCULATORY MODEL 

It is now possible to express the moment of the lift forces exerted by the radial1 runner flow over 
the vane-bound vortices, thanks to the LAGALLY formula for the theoretical lift. Taking 

≅ 1: 

. .
. . . .

. . .

.
. . . .

.
. . . .  

      (3.1) 

                                                           
1 The circumferential component of the runner flow exerts on the vanes radial LAGALLY forces that do not 
contribute to the torque  . 
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. .

2.
. . .

1 1
. . . .

. . ln

1 cotan	
cotan	

 

and the moment exerted by the flow over the  vanes, i. e. on the runner solid structure:  

. . .
. . .

. . . . . .

.
. . . .

. . .

.
. . . ln      (3.2) 

	 . . . . . . 1
cotan	
cotan	

 

The theoretical power that is collected on the rotation axis of the machine is therefore: 

. . . . . . . 1 	

	
. . . . . .   (3.3) 

from which the theoretical head :  

. . 1 	

	
     (3.4) 

It is noteworthy that Eqs. (3.1) to (3.4) are the same as can be derived from the EULER global 
approach. The additional information that can be obtained from the present theory, based on the 
circulatory approach, shows in a clear way that the shape of the vane profile between runner 
entry and exit is not indifferent. Indeed, for an arbitrary vane profile respecting the given entry 
and exit angles the self-replicating conditions for the vane-attached vorticity distribution will not 
be respected and flow separation from the vane surfaces will have to be expected. 

 

Fig. 4 – Several skeleton vane profiles for a single exit angle, 40°,and different inlet angles  
[From Eq. (2. 24)].  

The profile marked ‘SEPARATRIX’ is a logarithmic spiral  and corresponds to a 
hypothetical machine running at zero power (runaway mode, axial inlet and exit velocities). The profiles with 

 are typical of turbine runners, those with  are typical of pump runners (in this example, 
‘centripetal’-type pumps not used in practice). 

4. CONCLUSIONS 

The above simplified mathematical model of the runner of a low specific speed reaction 
hydraulic turbo machine shows some of the advantages of the ‘circulatory’ approach for a better 
comprehension of some of the essential features of the internal fluid flow. The paradigm of the 
perfect fluid, of the irrotational flow in the inter-vane spaces, of the vane-fluid kinematics and 
dynamics through the replacement of each vane with a self-replicating system of vorticity 
distributions attached to the vane allows to gain some interesting insights (albeit schematic ones 
of the energy transformations taking place inside a Francis-type runner. 
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It is possible to extend the present theory to the analysis of the internal flow at off-design 
regimes of the machine (exit velocity no longer radial) (see original paper in Italian).  

Further developments of potential interest appear as feasible. In particular, modeling the 
presence of a ‘vortex rope’ downstream of the runner exit section could be attempted. Also, the 
modeling of some instationary types of regime, such as rotating stalls or inter-vane channel 
block, vane-detached flow etc., could conceivably profit from their representation introducing in 
the model the presence of concentrated or distributed vortices, co-rotating or moving relative to 
the runner. The present essay is viewed as a simple introduction to a variety of more esoteric 
schematizations of engineering interest. 

 
First published (in Italian) May 1993; English version December 2016 
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