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Abstract: This paper presents an analytical study which deals with the behavior of the circular 
plates in bending theory, considering the soil-structure interaction under Winkler's hypothesis. It 
was intended to illustrate the variation of internal forces and deformations according to the 
flexibility coefficient of plates considering three models: a fixed solid circular plate subjected to a 
uniformly distributed load, a fixed solid circular plate acted by a displacement applied on the 
exterior contour and a solid plate subjected to a temperature gradient. For this study the 
computation relations were written as a product between a dimensional and a non-dimensional 
factor, the last one indicating the variation of internal forces and deformations. For each type of 
action there are presented results obtained using the finite element method to illustrate the 
differences between this method and the analytical computation. 
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1. Introduction  

The circular plates - soil interaction is a complex and difficult to handle problem which is 
encountered in the sizing and the designing of a large number of special, axisymmetric 
constructions, such as tanks, secondary and primary clarifiers, pumping stations, overhead tank, 
cement silos, cereals and clinker silos, fermentation tanks and so on. This issue has been and 
remains one of particular importance, with a large number of scientific papers devoted with 
solutions which are still far from a satisfactory approximation of the structure –soil interaction.  

Theoretical foundation of the plates computation on elastic medium was laid by Winkler in 1867 
[1] and later by Boussinesq in 1885 [2], the next developed models appeared in a desire to 
improve the first two and achieve results closer to real behavior [3], [4], [5]. 

The structure - soil interaction analysis can be achieved both by using conventional methods 
available in the literature and also by using software based on finite element method, each 
having its advantages and disadvantages. Regardless of the method adopted, accuracy of the 
results is dependent on the computational model and the soil physical and mechanical 
characteristics of determination. 

The purpose of this paper is both to provide an analytical study of the influence of flexibility 
coefficient on the size of internal forces and deformations due the action of certain loads 
considering soil a Winkler medium and also to compare results analytically with those provided 
by the ANSYS Mechanical APDL program. 

The Winkler’s model was chosen because it is clear and easily to apply, providing satisfactory 
results for sands and lacking cohesion soils, with a reduced influence of coefficient of subgrade 
reaction on the results. 
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2. The Winkler’s model. State of internal forces and deformations 

The Winkler’s model is based on the concept that the soil is a continuous, homogeneous and 
elastic medium, where the reaction at any point is proportional to the deformation of the point, 
the feature relation being: 

   tp r k w r  .     (1) 
From a mechanical standpoint, the model is composed of independent springs whose elastic  
characteristic is the coefficient of subgrade reaction. It is considered that the foundation is in 
permanent contact with the ground over its all surface, the friction effect in bending study is 
neglected and the plate deformations are sufficiently small to be allowed to apply the principle of 
superposition effects. 

 
Fig. 1 – Circular plate on Winkler’s medium 

The state of internal forces and deformations for a circular plate supported on elastic medium as 
shown on Figure 1, subjected to temperature gradient T and to axisymmetric forces applied 
normaly to plates plane can be studied from the bending plates solution of synthesis equation, 
together with the boundary conditions. The synthesis equation is a fourth order differential 
equation, nonhomogeneous with variable coefficients [6], [7]: 
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In equation (2) the following notations were used: 

         (3) 
r

R
       (4) 

R = radius of circular plate; 

r = radius of a point situated on the circular plate; 

= nondimensional variable that defines the position of computational section; 

4 k
R

D
        (5) 

= the flexibility coefficient of plate; 

k = coefficient of subgrade reaction; 

h = thickness of  plate; 

= the Poisson’s ratio; 

D = flexural stiffness of circular plate; 

p(r)

k

w(r)

r
R
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 
3

212 1

E h
D






 
     (6) 

E = the modulus of elasticity (Young’s modulus); 

w() = the normal component of displacement to plate surface, considered the unkown of 
equation (2); 

p() = axisymmetric load aplied normaly to plate surface; 

     i et t
T

2

  
    =  temperature gradient, ti() is the bottom face temperature and te() is 

the top face temperature of circular plate. 

t = thermal coefficient of expansion. 

The general solution of syntesis equation w() is composed of a particular solution that depends 
on the type of load (normal forces to plate surface or temperature gradient) and a solution of the 

homogeneous equation 
         

4 3 2
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     
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      p ow w w  
.    (7) 

The homogeneous solution can be expresed with Bessel functions of first kind, zero order 
 0J  and the second kind modified, zero order  0K   [6], [7]: 

 
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       

ow A J i A K i A J i A K i      (8) 

Separating the real part of the solution (8) and using the Kelvin Thomson functions, general 
solution becomes [6], [7]: 

           1 2 3 4        pw w C ber C bei C ker C kei     
 (9) 

The following notations have been used: 

 ow   = the homogeneous solution of equation (2); 

 pw   = the particular solution of equation (2); 

1A , 2A , 3A , 4A = constants of integration; 

1C , 2C , 3C , 4C = constants of integration whose values can be obtained due to boundary 

conditions; 

 ber  ,  bei  ,  ker  ,  kei  = Thomson-Kelvin functions which can be defined with the 

following relations [8]: 

a) with series representation ( 6  ): 
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where C is the Euler’s constant 0.5772...C  . 

b) with asymptotic representation ( 6  ): 
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Using equation (9) and considering solid plates resting on elastic medium (constants 3C and 4C  

must be zero to have finite deformation in the center of plate) we can express relations for 
defining the status of internal forces and deformations due to action of axisymmetric forces and 
temperature gradient: 
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The following notations have been used: 
() = rotation of tangent to a deformed fiber in radius direction; 

 rM  = bending moment in radius direction; 

 M  = bending moment in ring direction; 

 rQ  = shear force. 

The positive signs conventions used for internal forces and deformations are shown in Figure 2: 

 

Fig. 2 – The positive signs convention of internal forces on an infinitesimal element and the positive signs 
convention of deformations for a circular plate  

3. Computational models. The variation of internal forces and deformations due to the 
flexibility coefficient  

To illustrate the influence of flexibility coefficient on the values of internal forces and 
deformations three cases were considered: 

- 1’st case: fixed solid circular plate subjected to an uniform distributed load p (Fig.3); 

- 2’nd case: fixed solid circular plate acted by a displacement we applied on the exterior 
contour (Fig.4); 

- 3’rd case: solid circular plate subjected to a temperature gradient T (Fig.5). 

  

Fig.3 – 1st case Fig.4 – 2nd case 

 

Fig.5 – 3rd case 
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Considering the three cases presented, it have been determined the computational relations for 
internal forces and deformations starting from the general relations (18), (19), ..., (22). 

3.1. Particular solutions, boundary conditions 

The particular solutions for each type of load have been determined considering the form of the 
right member of equation (2): 

- for the first case:  

1p
p

w
k


     (23) 

- for the second and the third case:  

2 3 0p pw w 
.     (24) 

The integration constants (C1, C2) were determined using the following boundary conditions: 

- 1’st case: for exterior contour 1       

  0w  
     (25) 

  0  
     (26) 

- 2’nd case: for exterior contour 1       

  ew w 
     (27) 

  0  
     (28) 

- 3’rd case: for exterior contour 1       

  0rM  
     (29)  

  0rQ  
.     (30) 

3.2. The variation of nondimensional coefficients 

The general computational relations for internal forces and deformations were written as a 
product of two factors, one nondimensional and another one dimensional; the Poisson’s ratio was 

considered  = 0.2 and a variation between 1 and 15 was chosen for the flexibility coefficient. 

The nondimensional coefficients c() were plotted depending on the  variable. 

3.2.1. Computational relations for the 1’st case 

Computational relations for deformations [7]: 

   1 1  w
p

w c
k

 
    (31) 

   1 1 

p

c
k R   

    (32) 
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Fig. 6 – Variation of nondimensional coefficient 
cw1() 

Fig. 7 – Variation of nondimensional coefficient  
c1( 

Computational relations for internal forces: 

   2
1 1  r MrM p R c 

    (33) 

   2
1 1   MM p R c       (34) 

   1 1  r QrQ p R c  .    (35) 

 
Fig. 8 – Variation of nondimensional coefficient 

cMr1() 
Fig. 9 – Variation of nondimensional coefficient cM1( 

 

Fig. 10 – Variation of nondimensional coefficient cQr1() 
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3.2.2. Computational relations for the 2’nd case 

Computational relations for deformations [7]: 

   2 2e ww w c  
    (35) 

   2 2
ew

c
R     .    (36) 

Fig. 11 – Variation of nondimensional coefficient 
cw2() 

Fig. 12 – Variation of nondimensional coefficient c2 

Computational relations for internal forces: 
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    (37) 

   2
2 2   e MM w R k c       (38) 

   2 2   r e QrQ w R k c  .    (39) 

Fig. 13 – Variation of nondimensional coefficient 
cMr2() 

Fig. 14 – Variation of nondimensional coefficient cM2( 
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Fig. 15 – Variation of dimensionless coefficient cQr2() 

3.2.3. Computational relations for the 3’rd case 

Computational relations for deformations [7]: 
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Fig. 16 – Variation of nondimensional coefficient 
cw3() 

Fig. 17 – Variation of nondimensional coefficient 
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Fig. 18 – Variation of nondimensional coefficient 
cMr3() 

Fig. 19 – Variation of nondimensional coefficient 
cM3( 

 

 

Fig. 20 – Variation of nondimensional coefficient cQr3() 

4. Numerical example using the analytical method and the finite element method 

It was considered a circular concrete plate (C20/25 strenght class), Young’s modulus E=30 GPa, 
Poisson’s ratio =0,2, with the following geometrical characteristics: plate radius R=4,50 m, 
thickness of plate h=0,30 m, supported on a Winkler’s medium with the coefficient of subgrade 
reaction k=15000 kN/m3. For the three cases presented it was considered: 

- 1’st case: uniformly distributed load p=60 kN/m2; 

- 2’nd case: displacement we=0,01 m applied on the exterior contour; 

- 3’rd case: temperature gradient T=-10 0C. 

According to the proposed examples, the value for flexibility coefficient is =3,058. 

The internal forces and deformations were determined for each case using the analytical 
proposed method and ANSYS Mechanical APDL program [9]. For the finite element method 
(FEM) there have been used SHELL181 elements to define the concrete plate and SURF154 
elements for elastic medium. 
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Fig. 21 – The plate mesh - ANSYS Mechanical APDL 

 

The results obtained from the analysis performed are comparatively presented in the following 
graphs and tables:  

Table 1  

The variation of deformations w [m] depending on the load type and boundary conditions 


1’st case 2’nd case 3’rd case 

analytical results FEM results analytical results FEM results analytical results FEM results 
0 0.00288 0.00290 0.00281 0.00275 -0.00135 -0.00135 

0.1 0.00283 0.00285 0.00294 0.00288 -0.00134 -0.00133 
0.2 0.00267 0.00270 0.00332 0.00325 -0.00129 -0.00128 
0.3 0.00243 0.00245 0.00393 0.00387 -0.00119 -0.00119 
0.4 0.00210 0.00212 0.00475 0.00469 -0.00105 -0.00104 
0.5 0.00170 0.00173 0.00574 0.00568 -0.00084 -0.00083 
0.6 0.00127 0.00129 0.00683 0.00677 -0.00054 -0.00054 
0.7 0.00082 0.00085 0.00794 0.00788 -0.00015 -0.00015 
0.8 0.00042 0.00044 0.00895 0.00890 0.00037 0.00037 
0.9 0.00012 0.00013 0.00970 0.00966 0.00102 0.00101 
1 0 0 0.01 0.01 0.00181 0.00180 

 

 

Fig. 22 – The variation of deformations w [m] depending on the load type and boundary conditions 
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Table 2  

The variation of rotations [rad]depending on the load type and boundary conditions 


1’st case 2’nd case 3’rd case 

analytical results FEM results analytical results FEM results analytical results FEM results 
0 0 0 0 0 0 0 

0.1 0.00023 0.00022 -0.00057 -0.00056 -0.00007 -0.00007 
0.2 0.00044 0.00044 -0.00111 -0.00110 -0.00016 -0.00016 
0.3 0.00064 0.00064 -0.00161 -0.00159 -0.00026 -0.00026 
0.4 0.00081 0.00081 -0.00203 -0.00201 -0.00039 -0.00039 
0.5 0.00094 0.00093 -0.00234 -0.00232 -0.00056 -0.00056 
0.6 0.00099 0.00099 -0.00248 -0.00246 -0.00076 -0.00076 
0.7 0.00096 0.00095 -0.00240 -0.00238 -0.00100 -0.00101 
0.8 0.00081 0.00080 -0.00202 -0.00199 -0.00129 -0.00129 
0.9 0.00050 0.00049 -0.00125 -0.00123 -0.00160 -0.00160 
1 0 0 0 0 -0.001921 -0.001923 

 

 
Fig. 23 –  The variation of  rotations [rad] depending on the load type and boundary conditions  

 
Table 3  

The variation of bending moments Mr [kNm/m] depending on the load type and boundary conditions 


1’st case 2’nd case 3’rd case 

analytical results FEM results analytical results FEM results analytical results FEM results 
0 42.680 42.399 -106.699 -106.000 42.721 42.724 

0.1 41.989 41.724 -104.971 -104.310 41.901 41.909 
0.2 39.815 39.413 -99.537 -98.532 39.476 39.317 
0.3 35.862 35.432 -89.654 -88.578 35.548 35.366 
0.4 29.649 29.227 -74.123 -73.067 30.308 30.142 
0.5 20.541 20.185 -51.352 -50.461 24.053 23.933 
0.6 7.782 7.580 -19.455 -18.951 17.223 17.161 
0.7 -9.442 -9.622 23.604 24.054 10.436 10.451 
0.8 -31.920 -31.996 79.800 79.989 4.528 4.647 
0.9 -60.308 -60.172 150.770 150.430 0.590 0.807 
1 -94.981 -86.158 237.452 215.460 0.000 0.117 
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Fig. 24 – The variation of bending moments Mr [kNm/m]  depending on the load type and boundary conditions 

 

Table 4  

The variation of bending moments M [kNm/m] depending on the load type and boundary conditions 


1’st case 2’nd case 3’rd case 

analytical results FEM results analytical results FEM results analytical results FEM results 
0 42.680 42.399 -106.699 -106.000 42.721 42.725 

0.1 42.335 42.062 -105.838 -105.160 42.311 42.317 
0.2 41.263 40.898 -103.157 -102.240 41.093 40.986 
0.3 39.348 38.956 -98.370 -97.387 39.108 38.969 
0.4 36.405 36.008 -91.012 -90.016 36.426 36.283 
0.5 32.185 31.812 -80.463 -79.523 33.158 33.030 
0.6 26.389 26.080 -65.973 -65.188 29.467 29.363 
0.7 18.688 18.386 -46.719 -45.946 25.576 25.499 
0.8 8.745 8.488 -21.864 -21.190 21.788 21.754 
0.9 -3.741 -3.905 9.351 9.820 18.494 18.506 
1 -18.996 -15.329 47.490 38.376 16.189 16.584 

 

 

Fig. 25 – The variation of bending moments M[kNm/m] depending on the load type and boundary conditions 
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Table 5  

The variation of shear forces Qr [kN/m] depending on the load type and boundary conditions 


1’st case 2’nd case 3’rd case 

analytical results FEM results analytical results FEM results analytical results FEM results 
0 0.000 -0.080 0.000 0.200 0.000 -0.098 

0.1 -3.879 -3.798 9.698 9.463 -4.540 -4.509 
0.2 -8.271 -8.187 20.678 20.446 -8.909 -8.891 
0.3 -13.668 -13.541 34.171 33.829 -12.912 -12.850 
0.4 -20.515 -20.332 51.287 50.804 -16.306 -16.210 
0.5 -29.177 -28.909 72.942 72.244 -18.779 -18.661 
0.6 -39.901 -39.512 99.754 98.752 -19.931 -19.821 
0.7 -52.766 -52.328 131.915 130.790 -19.266 -19.097 
0.8 -67.611 -67.093 169.028 167.720 -16.190 -15.977 
0.9 -83.967 -83.358 209.918 208.430 -10.018 -9.797 
1 -100.962 -96.540 252.405 241.900 0.000 -2.541 

 

 

Fig. 26 – The variation of shear forces Qr [kN/m] depending on the load type and boundary conditions  

5. Conclusions and observations 

Taking into consideration the analyses made in this paper, the state of internal forces and 
deformations is influenced by the following parameters: 

- load type and the functions which define loads; 
- boundary conditions for plate; 
- the ratio between the plate stiffness and the coefficient of subgrade reaction. 

The 4 k
R

D
    parameter is a flexibility coefficient with which three categories of behavior for 

plates can be defined: 

- rigid plates if 1.5  ; 
- plates with finite flexibility and stiffness if 1.5 8  ;  
- flexible plates if 8 . 

It was observed that for rigid plates with 1.5  , in the first two analysed cases, the contact 
pressures between plate and soil have a quasi-uniform variation across the plate radius and it 
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becomes a parabolic variation with the increase of . The difference between the two cases is 
that for the first case, the contact pressure increases with the increasing of flexibility coefficient 
and for the second case the pressure decreases as the plate becomes more flexible, the same 
phenomenon is encountered for displacement w and shear force Qr. 

Regarding the rotations, for the first cases the values increase with the increasing of  flexibility 
coefficient, with a parabolic variation with positive or negative values, the variation is changing 
for flexible plates with maximum values near the exterior contour. 

The values for bending moments in radius directions Mr and in the ring direction M (for the first 
two analysed cases) have high values for rigid plates because the soil response is insignificant 
and reduced values for flexible plates. 

The displacements and the rotations are blocked by soil reaction and consequently the bending 
moment stretch the cooler fiber of plate in the case of thermal gradient action. The internal forces 
and deformations depend on flexural stiffness of the circular plate and soil reaction. 

For the first two analysed cases the variation of internal forces and deformation is identical to the 
variation of nondimesional coefficients, but this observation is not available for the third case 
(for the last case the dimensional coefficient depends on the thickness of plate). 

Comparing the analytical results with those obtained from the application of finite element 
method with the ANSYS Mechanical APDL program there is a good corespondence, the 
differences being within engineering practice accepted limits (about 3-5%). 

These conclusions and observations are important for the design of structures as knowledge of 
how the internal forces are located is important for reinforcements. Based on these studies other 
studies can be achieved considering some new boundary conditions and other types of loads, 
such that when engineers use programs based on the finite element method they will have control 
over the results. 
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