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Abstract: The paper presents the Spectral Representation Theorem of a stationary process and two
simulation methods derived from it. In order to test the accuracy of the two simulation methods two
numerical applications are employed. First, using a theoretical power spectral density (PSD), two
sets of sample functions, corresponding to each method, are generated and a comparison of the
obtained numerical results with the analytical PSD is carried out. The second example is more
complex and consists in using the stationary zone of the strong motion of the recorded NS
acceleration registered at INCERC during the 1977 Vrancea earthquake. The corresponding Fourier
Spectrum is calculated. In order to obtain a smoother PSD representation for the real Fourier
spectrum, a specific barrier model spectrum (SBM) is fitted to it and the corresponding PSD
calculated. This PSD is used to generate two sets of samples. The mean PSD obtained using both
methods of simulation is compared with that characterizing the registered acceleration. The paper
shows that the generated time series possess all the theoretical probabilistic characteristics
discussed below, when the number of terms used in the simulation formulas is large. Three types of
estimators are employed in the numerical evaluation of both simulation methods
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1. Introduction

The modern dynamic analysis of the civil structures is conducted considering the randomness of
the material and applied loads. In the absence of the general analytic solution of the differential
stochastic nonlinear system, Monte Carlo type methods are employed and, consequently,
samples of the stochastic time-series for both, material and loads must be generated. The most
damaging type of loading, the earthquake induced loads, are known to have the characteristics of
a non-stationary stochastic process. In this paper, the first approximation of such complicated
process, the Gaussian second-order stationary processes simulation is discussed. From the
theoretical point of view, the subject of the stationary stochastic processes is extremely well
researched and documented in many reference books of mathematical notoriety [1, 2, 3, 7]. On
the contrary, from the practical point of view, progress in the domain of interest of structural
engineering and modern applied mathematics has been slow and the knowledge limited, until
1990, when a proliferation of research work was noted, being emboldened by the usage of the
Monte Carlo methods. Applications of stationary processes in the field of engineering can be
found in [9, 10]. The intent of the present article is to go from the theoretical knowledge to the
practical application of the Gaussian second-order stationary processes and, consequently, a
general methodology is presented. It must be emphasized that one of the most stringent problems
arising in the generation of a stationary stochastic process {X(¢), zeR} using the Spectral

Representation Theorem, is the knowledge, in analytical or numerical form, of the power
spectral density (PSD), denoted Sy (w), characterizing the process. This is not a simple

problem, since, in most of the cases, the process is represented by only one registered sample,
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with finite lengthz  [0,7]. In the absence of the PSD representative for the process, one is forced
to assume the ergodicity of the process, considering that the registered sample probabilistic
proprieties are similar to those of the process. In this case, it is clear that only an estimator of the
real PSD can be found, Sy (@). This paper addresses the numerical simulation of the Gaussian

stationary time series employing two methods directly derived from the Spectral Representation
Theorem of the stationary stochastic processes. Two simulation methods are presented and their
accuracy is established using three types of estimators of the generated ensemble mean PSD. In
order to test the accuracy of the two simulation methods two numerical applications are presented:
first, a comparison of an analytical PSD with the obtained numerical results is carried out, and,
then, a simulation of the stationary time series corresponding to the stationary part of the recorded
NS acceleration component of Vrancea 1977 earthquake, registered at INCERC in Bucharest. All
numerical applications are conducted using the code developed in Matlab [12] by the authors.

2. Stationary Stochastic Processes. Mathematical Background

Surveying the existing technical literature [1, 2, 3, 7], one is faced with a large variety of
notation and interpretation of the main theoretical developments and results of the theory. In
order to clarify the theoretical aspects related to the main scope of the present paper and to have
clear definitions and notations, a number of important theoretical aspects related to the theory of
the second-order stationary stochastic processes are stated herein without proofs. Our interest is
concentrated toward the case of the spectral representation of the real-valued one-parameter
second-order stochastic process, denoted as{X,(¢)¢eR}. The continuous parameter is

represented by the time .

Definition 1: 4 stochastic process {X(t), t € R} is a family of random variables indexed by the
real continuous parameter t and defined on a common probability space. All those random
variables have an identical distribution.

The range of the time index ¢ is theoretically(—,), but practically, for any physical
phenomenon, it is limited to[0,7']. For mathematical reasons, the general case of the complex-

valued process is considered first and the results are then particularized to the case of the real-
valued process, i.e. the class of processes of interest in engineering applications. The
mathematical generality is further restrained to the subcategory of stochastic processes with first
and second order finite moments, called second-order or correlation-stationary processes.

A complex-valued second-order stochastic process of continuous parameter ¢ is considered:
X()=Xx()+i-Xx,(¢) (1)

where i=+/-1 is the imaginary number. Three important functions, deterministic in nature,
characterizing the random process{X(¢), t € R}, the mean, auto-covariance and auto-correlation
functions are defined as follows:

Definition 2: The mean function of{X(t),t € R}, representing the first moment of the finite-
dimensional distribution Py (x,t) is expressed as:

s (t) = ELX(0)]= ELX,.(0) + X, ()] = EL2, (0| +ELX; (0)] @

where the symbol E[] represents the ensemble average operator, while {X, ()} and {X,,(¢)} are
two real-valued stochastic processes.

The function u y (¢) is a deterministic function of t.
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Definition 3: The auto-covariance function (CF'), representing the centered second moment of
the finite-dimensional distribution P, (x,z) , is expressed as:

Cloty) = B () - i 01X @) - 1 ()]} =

= EX @)X ()]~ 1" (0) 1, 1)
where (x) indicates a complex conjugated value.

(3)

The covariance function Ty (1,2, ) is also a deterministic function.

Definition 4: The auto-correlation function (ACF) of the process {X(¢), z € R} is defined as:

Ry(t1,12)= E[X*(fl)X(fz)J (4)
It must be emphasized that the functional relation between the auto-covariance (3), the mean (2)
and auto-correlation (4) functions indicates that only the knowledge of two of them is sufficient
for applications.

Definition 5: The variance function is a particular case of (3) where ty =t, =t
X O1= )= Epr(0- e 0 |-

= E[X ()X ()]~ 11, ()1, (1)
The variance function ¥y [X (¢)] is also a finite deterministic function for all «.

()

A special class of random processes, important for practical applications, is the class of
stationary random processes defined below.

Definition 6: 4 stochastic process {X(t), t € R} is strictly stationary if for any set of indexes
t,t,...,t, and any real numberk , the joint probability distribution of {X(tl), X(t2 ),..., X(tn )} is
identical with the joint probability distribution of {X(t, + k), X(t, +k),..., X(t, + k)}

The above definition indicates that the probabilistic structure of a stationary process is invariant
under time variable ¢ translation. Constraining the process to strict stationarity is usually a too
strong requirement for practical applications, and, consequently, a weaker form of stationarity,
called wide sense stationarity, is used.

Definition 7: 4 stochastic process {X(t), t € R} with E[|X(t)|2:| <o is said to be wide sense
Stationary (second-order stationary or correlation-stationary) stochastic processes if:

wx (¢)= u = constant (6)
and

Ry (t,12)= Ry (1 ~12)= Ry (~7) (7)
where t) -ty =7 and ty) > 1.
Remark: According to (6) and (7) the wide sense stationary stochastic process is characterized
by a constant mean and an auto-correlation function dependent only on the time difference
between two particular times t; and t,. Then, the variance (5) of the process becomes time

independent:

Vx[X(0)]=Tx(0) (8)
By interchanging ¢, with # within (7):

Ry (1‘2,11) = E[X*(l‘z)X(l‘l)} =Ry (l‘z —tl) =Ry (Z') ©)

and consequently:
Ry(-7)=Rx(r) (10)
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For the remaining of this paper only second-order stationary processes are considered. Two
theorems of practical significance for the application of the second-order stationary stochastic
processes, namely the Wiener-Khintchine Theorem and the Spectral Representation Theorem,
are stated below. For generality, the relations are first expressed as Fourier-Stieltjes integral, and,
later, considering only differentiable functions, they are converted to Riemannian integral
format. Both theorems apply to the stochastically continuous stationary process, so the continuity
concept is defined first.

Definition 8: A stochastic process {X(t) teR} is stochastically continuous at t=tg
(continuous in the mean) if:

lim E[{X(t)—X(tO)}Z}zo

1>ty
Theorem 1 (Wiener-Khintchine Theorem)([8]: 4 necessary and sufficient condition for Ry ()

to be the auto-correlation function of some stochastically continuous stationary process
{X(¢), teR}, is that there exists a function H(w), having the properties of a distribution

function on(—ow;), (i.e. H(-~0)=0, H(wo)=1 and H(w) non-decreasing) such that, for all t,
Ry () may be expressed as:

Ry(r)= f:oexp(ia)z')-dH(a)) (11)
H(w) is called spectral distribution function or integrated spectrum of the stationary process
{X(2), t eR}.

Remark: If the function H(w) is differentiable, then Sy (w)=dH (w)ldw exists, and is called

power spectral density (PSD) or power spectrum. Then (11) is expressed as a Riemannian
integral:

Ry(z)=[" explior) Sy(0)do (12)

which is the inverse Fourier transform of the power spectral density Sy (w). Reciprocally, the

power spectral density function Sy (a;) is expressed as the Fourier transform of the auto-
correlation function Ry (r):

SX(a)):% [ exp(-ior)- R, (r)ds (13)

Remark: The power spectral density function of the process {X(t), t R} has the following
properties:
1) Sy(o) is areal function and Sy (0)>0;
2) Ifthe process {X(t), t € R} is real, then Ry (z) is real and even. Therefore Sy (w) is also an
even function:
Sx(@)=5x(-w)
called two-sided PSD. In practical applications one often uses only the positive side of the
power spectrum. The one-sided spectral distribution denoted by G(w) is given as:

0, w<0
Glo)= {ZSX (), ©>0

3) If t=0in(12) then:
[” sx(@)do=Ry(0)= E[Xz(t)]
Thus, the total area under S y (o) equals the "average power” of the process{X (¢ )}.



23

Theorem 2 (Spectral Representation Theorem): Every stochastically continuous wide sense
stationary process {X (t), t € R} with zero-mean, uy =0, has the spectral representation:

X(r)= jjooo expliat)-dZ(o) (14)

where w is the angular frequency and {Z (a))} is a complex-valued spectral stochastic process
with orthogonal increments, characterized by the following properties for all @ and @' :
El[dZ(w)]=0 (15)
and
Elaz* (0)dz(a)|= 8(o - o)-dH (o) (16)
where 5() is the Dirac delta function.

Remark: The qualitative analysis of the relations (11) and (14) conduct to a few interesting
conclusions:

1) Any stationary process {X (¢), teR} and its auto-correlation function Ry (t) can be

additively built up by elementary and mutually orthogonal harmonic oscillations,
exp(iwt)-dZ(w) and exp(iwt)-dH (@), respectively. The difference consists only in the

physical nature of the resulting expressions, (11) and (14), which are deterministic and
random, respectively;
2) To have a physical interpretation of dH (w), (14) must be written in a different form:

X(r)= foo expliot):|dZ(e)exp(i-argidZ(w)})
= EOOO expli(er +argldZ(w)})]-|dz(w)

where |dZ (a)X = {Re[dZ (a))]2 +Im[dz (a))]2 }U ’ and argldZ(o)} = arctan[M} This

Re[dZ(o)]
equivalent form of (14) indicates that any second-order stationary process can be
represented as the limit of a sum of oscillatory functions, with random amplitudes |dZ (a)l

(17)

and random phase angles arg{dZ(w)}. In the particular case o = ' , equation (16) becomes
EDdZ (w)'z} =dH (a)), therefore dH (w) is the mean square amplitude of the o frequency

component in X (t).

3) The relations (9) and (12) indicate that the auto-covariance structure of a stationary process
{X (t), te R} is determined by its PSD. Thus, given a positive function Sy (o), or,

equivalently, a positive-definite function Ry (z), one can define a stochastic process
{X(¢), t e R} characterized by Sy (w) as PSD or R,(r) as auto-correlation.

3. Generating Real Gaussian Stationary Stochastic Processes

For practical application is necessary to convert the integral relation (14) to a form able to
generate proper samples of the process {X(¢), z € (0,7)}. Analyzing the spectral decomposition

(14) it is clear that the theoretical ways of generating processes {Z(w)} with orthogonal
increments must be emphasized. Consequently, the relation (14) can be further developed:

X(r)= f; (cos ot +isin wt)|dZ,.(w)+idZ,, (o) = ”
= f:o [COS wt-dZ, (a))—sin wt-dZ,;, (a))]+z'-[sin wt-dZ, (a))+ coswt -dZ;, (a))]
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where {Z,(»)}=Re[Z(w)] and {z, (a))}=|m[Z(a))] are two spectral real processes with

orthogonal increments.

For a real process {X(¢), r € R}, the case in point of the main physical applications, equation (18)
becomes:

X, (t) =Re[X(¢)]= EO [coswt - dZ,(w)-sinwt -dZ,, (o)) (19)
Then X, (f) = X,"(¢), for any ¢, which leads to the following (see [2]):

dZ(0)=dz* (- o) (20)
Consequently, for any

er(a)): er(_a)) (21)

dZ;y, (a)) =—dZ;y, (_ a)) (22)

Substituting (21) and (22) into the equation (19):

X,.(1) = ngo [coser - dZ,.(w)-sinart-dZ;,(o)] (23)
Expanding (15) and (16), results that for any >0, the processes Z, () and Z;,(®) have to
satisfy the following properties [2]:

EldZ,(®)]=0,0>0 (24)
EldZ;,()]=0,0>0 (25)
EldZ,()dZ;,,(o')]=0, for w,« >0 (26)
Eldz,(0)dz, ()] = %5(@ —0)-Sy (0)-do, for @' >0 7)
Eldz,,(@)dZ;,(o")]= %5((0' ~0)-Sy(0)-do, form,0' >0 (28)

The two orthogonal differences dZ, (») and dZ;,,() of the spectral stationary processes can be
expressed as:
er(a)):o-(w)'fr(Zl(w)) (29)
dZiy(0)=0(0): fin(Z(@)) (30)
where o(w) is a real function of » , £,(z;) and f;,(Z5) are two real functions of random
variables Z;(w) and Z,(w), respectively.

Remark: The restrictions (24) through (28) imposed upon dZ,(») and dZim(a)), do not

indicate a significant restriction on the functions f,(Z;) and fi, (Zz) and/ or random variables
Z1(w) and Z,(w) classes. For practical reasons, only simple forms of functions and elementary
distributions for Z1(w) and Z,(w) are employed herein.

Two methods are discussed below, based on two different cases of expressing dZ,(w) and
dZim(w):

e Method I:
Let £,.(Z1(0))=Z1(w) and f,(Zo(@))=Z5(w). Then (29) and (30) become:
z,(0)= o(w)-Zy(w) (31)



dZi( o) = olw) Z3()

The expressions (31) and (32) must satisfy (24) trough (28). From (24) we have,

o(w) E[Z1(@)]= 0= E[Z1(0)]=0
Similarly, from (25)
o(0)-E[Z(@)]= 0= E[Z5(0)]=0
Rewriting the restriction (26) using (31) and (32) it results that:
Elo(0)o(e)- Zy(0)Z5(@)]= 0=
o(w)o(@) E[z1()Z5(0)]= 0=

E[24(0)Z5(e')]= 0
The condition (27), for @ # o' becomes
Elo(0)o(e)- Z1(0)Zy(@)]= 0=
o(w)o(0)E[Z1(0) 2y ()] = 0=
E[Z)(0)Z1(0")]= 0
For w = o' (27) can be written as

1
2

Similarly, from (28), for o # o'
E[Z;(0)Z(0)]=0

If w=0w'", (28) can be written as
%SX (0)-do = E|dz,, () ]= *(0)- E[z2(@)]

From (38) and (40) one restriction is imposed, namely:

E|z2()]= £z3 ()|

In this case, the expression of the initially unknown function o () results:

o(w) = Sy (w)-do "
2~E|Zf(w)|

Remark:

L5, (0) do=E|dz (o) |- Elo*(@) 22(0))= 0*(0)- E[z2(w)]

25

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

a) Due to (33) and (34) the random variables Z,(w) and Z,(w) must have zero mean. We may
choose for this reason, Zi(w) and Z,(w)~N(0,1) or ~U(~a,a), where a is an imposed

interval limit;

b) Relation (35) is true if the random variables Z,(w) and Z,(w) are independent for any @

and @';

¢) The relation (37) is true if Z1(w) and Zi(w') are independent for any o # o'. Similarly,

(39) is true if Zy(w) and Zy(w'") are independent for any o # o' -

d) The possibility of using the uniform distribution U(-a,a) is eliminated due to the fact that
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by choosing a particular value for the limit a, we impose a restriction on the coefficients of
terms cos(wt) and sin(wt) in (19);

e) The only choice remaining is Z,(w) and Zy(w)~N(0,1), with Z(0) and Z,(w)
independent identical distributed random variables. In this case the relations (33) through

(37), (39) and (41) are satisfied. Under the above condition, from (42), the deterministic
function o(w), is expressed as:

o(w) = [W)u 2 (43)
Consequently, the final expression of (23) becomes:

X, ()= Igo (25x (@)-do)*[cosat - 21(o)-sin et Z;(0)] (44)
If one denotes 4(w) = Z;(w) and B(w) = -Z,(w), then (44) becomes:

X, ()= J'go (28 (w)-do)' ?[cos ot - A(w)+sin wt - B(w))] (45)

with 4(w) and B(w) ~ N(0,1), i.i.d (independent, identical distributed) random variables.

The simulation of the stationary process, based on the formula (45), can be conducted by
replacing the integral by the following infinite series:

X,.(t)= OZOJ (28 y (e )Aw)H 2[cos oyt - Ay, +Sin wyt - By ] (46)

where @y =kA® and Aw — 0, A, = A(wy ), By = B(wy ). For practical applications where the
computation cannot employ an infinite summation, the process X, (¢) will be approximated by
the finite sum:

X, (t)= %(2sx(mk)- Aw)'*[cosw,t- 4, +sinwt - B,] (47)

for a large N, such that wy = NAw is an upper cut-off frequency beyond which Sy () may be

assumed to be zero, for physical reasons, The number N remains to be established from
numerical evaluation.

Remark: The process X, (t) obtained using (47) is a Gaussian process, since Ay and By are
Gaussian random variables [9].

e Method II:

Let £, =cos(-) and f;,, =sin(-). Then, for any o the expressions (29) and (30) become:
dz,(0)=o(w)-cos(Z1(w)) (48)
dZiy(@y)=0(0)-sin(Z(w)) (49)

The expressions (48) and (49) must satisfy (24) through (28). From (24) results:
o(w)E[cos(Z1(w))]= 0= E[cos(Z;())]=0
or equivalently:
f:o COS(Z)le(w) (z)dz=0 (50)
Similarly, (25) implies:
o(w)E[sin(Z5(w))]= 0= E[sin(Z,(w))]=0
or

fwsin(z)PZz () (2)dz =0 (51)
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where le(a,)((o) and Pzz(w)((p) are the probability density functions for Z;(w) and Z,(w),

respectively. Due to the fact that the random variables Z;(w) and Z,(w) play the physical role
of an angle and the relations (50) and (51) must be satisfied, they are considered to be uniformly
distributed ~ U[0, 27]. Then:

1/27,0<z<2x
PZl(a)) (2)= PZZ (w) (2)=

0, otherwise
and (50) and (51):
Eldz,(0)]= (o) Jj”%cos(z)dz:o (52)
Eldz,, (o)) = (o) joz”%sin(z)dz —0 (53)

are indeed verified.
Rewriting the restriction (26) using (48) and (49) it results that:

Elo(w)o(@')-cos(Z;(w))sin(Zy ()] = 0=
o{0)o{of Elcos(z3(a) sin(Za )] - 0= 0
Elcos(zy(@))sin(Z, ()] = 0
If Z,(w) and Z,(w") are independent random variables, for any o # ', then:
E[cos(Zy (@) )sin(Z2(e))]= Elcos(Zy () )] Elsin(Z; ()] =

- I()Z”icos(z)dz-Ij”isin(z')dz’ =0 (%5)

therefore the relation (54) is satisfied.
The condition (27), for o # ' becomes:

Elo(w)o(@')- cos(Z;(w))cos(Z; (@)= 0=

o(w)o(w') E[cos(Zy (w))cos(Z, ()] = 0=
E[cos(Zy(w))cos(Z, (o) )] =

Assuming that Z; (w) and Z; (') are independent random variables, for any o # ':

E|cos(Zy (w))cos(Zy ()] = Elcos(Zy ()] Elcos(Zy ()] =

= J'z”icos J'zzricos(z’)dz' =0
2r

and (27) is satisfied. The condition (28), for w # " becomes:

E[sin(Z3(@))sin(Z,(e"))]= 0
If Z,(w) and Z, (") are assumed to be independent random variables, for any o # «":

E[sin(Z3(@))sin(Z("))] = Elsin(Z(w))| E[sin(Z, ()] =

2z 1 . 2r 1 . N
= IO ESIn(z)dz-Io Esm(z )dz =0
therefore (28) is satisfied.
For w = ' the restriction imposed by (27), can be written as:
SO _ iz, (o) | = ] o (o) coslz(@)) |-
= az(a))E cos?(Zy(w)) ]: (o) f cosz(z)PZl(w) (z)dz = (56)

_1 2
Io —ﬁcos z)dz = > (w)
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Similarly, (28) gives:
2O _ g4z (o) | = 0% (o)

The expression of the deterministic function o (@) obtained from (56) is:

o(w)=[Sy (v)- da)]ll 2 (57)
Therefore, the final expression of (23) for this case becomes:
o /12 : :
X,.()= 2[0 (Sy (@) -dew) ?[cos ar - cos(Zy (w))-sin wt -sin(Z, () )] (58)

If we denote 4(w) = cos(Z1(w)) and B(w) = —sin(Z,(w)), it results that (58) is similar with the
formula (45) from case I.

Remark: If Zj(0) = Zy (o) = (@), with ¢(w) uniformly distributed in [0,27z], and ¢(w) and

¢(@") are independent for any o # @', then ¢(w) has the physical interpretation of a random phase.

The final expression of (58) is:

X,.(t)=2 _[SO (S v (@)dew) ?[cos et - cos(p(e))—sin e -sin(g(o))] (59)
or equivalently:
X, (0)=2[ " (Sy (@)do)'? cos(or + §(w)) (60)

The simulation of the stationary process X, (r) used in the applications is based on the
approximation of the formula (60). As in the previous case, X, () can be approximated by the
finite sum:

N
X, (1) =242 225, (o,)- Ao} cos(at + ¢, ) (61)
k=0
where @y, =kAw and for a large N, such that @y = NA® is an upper cut-off frequency beyond
which Sy (w) may be assumed to be zero, for physical reasons.

Remark: The process X, (t) obtained using (61) is asymptotically Gaussian as N — o, due to
Central Limit Theorem [9].

4. Power Spectral Density Estimation

One important problem of generating samples of the stationary stochastic process using the
formulas (47) or (61), is the accurate estimation of the power spectral density S, (@) of the original

process. In many practical cases, from a singular sample of a recorded time-series, X,, X;,.... Xy 1,
of an assumed second-order stationary stochastic process, an estimator Sy (@) of the real power

spectral density Sy (w) is obtained. It is desirable that the calculated estimator S b (a)) be as close
as possible to the real Sy (w). There are two general approaches to the PSD estimation problem:

parametric and nonparametric. In the following subsections, three non-parametric estimators: the
correlogram, the periodogram, and the windowed periodogram are utilized.

Having in mind the statistical estimation of the PSD, a few concepts used to characterize an
estimator will be defined next. These concepts are bias, variance and consistency.

If Sy () is the estimator of S y (w), the difference between the mean of the estimate, EIS‘ X(a))J
and its true value, Sy (w) , is called the bias

Bs =Sx(w)-E [§X (w)J
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Thus, if the mean of an estimate is equal to the true value, it is considered to be unbiased and
having a bias value equal to zero.

The variance of an estimator effectively measures the width of the probability density and is

[(SX —E [SX DZ}

If the bias and variance both tend to zero as the number of observations become large, the
estimator is said to be consistent. This implies that the estimator converges in probability to the
true value of the quantity being estimated, as N becomes infinite.

4.1. The Correlogram Method

The calculation of the power spectral density function estimator §X(a)) of the process
{X.(z), t e R} using the process ACF function starts by approximating the PSD from relation
(13) by:

SX(a));% S exp(-ior)Ry (z) (62)

T=—00
Suppose that the real stochastic process {X,(¢),z e R} is sampled at N points, Xg, X7,.... Xy_1,
and that these points span a range of time 7 =(N -1)*A¢ , where At¢ is the sampling time

interval. First, the ACF of the recorded time-series is calculated using the standard unbiased
estimate:

N-lz]-1
~ 1
RX(r)=W ZX Kpile 7=04L.. HN-1) (63)
or the standard biased estimate:
. N—M—l
Rx(r):% DXy Xy T=02L (N -1) (64)
n=0

Then, if the sum in (62) it is truncated to N terms only and Ry (z) is replaced by either (63) or
(64) R v () estimator, the PSD estimator ~§c (), called correlogram, is expressed as:

1

:ZN: ex p(—icor)]%X (r) (65)

T(Nl

T

- 1
Sx(w): :2_

4.2. The Periodogram Method

As demonstrated in [4], a second-order weakly stationary random process does not possess a
Fourier transform. A proof of that statement is presented here. The truncated Fourier transform
of a sample function of {X,(¢), r < R} be expressed as:

T
X, (@)= [ X, (t)exp(—ict)dt (66)
-7
The existence in mean square of X7(w) is possible if and only if [4]:
T T
EX7(@)X1 () ] [ [ Rx (2~ 1 )expl-i(waty — axn ), (67)

-T-T



Is bounded for any @, and w,. After changing the integration order and denotingz =,

T-t
EU)?T ‘ } .[ .[ Ry (7)exp(—iwr)drdy =
-T-T-t
2T T-t
= J.RX )exp (- ia)r)[ J. dtlez'Jr
0 -T
0 T
+ '[ Ry (7)exp(- ian')( _[ dtl]dr
=2T -T-7
2T
= I (27 |z|) Ry () exp(—iwr)dT
2T

—t:
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(68)

The last integral of (68) is divergent for 7 — o and, therefore, the Fourier transform of the

stationary process {X,(¢), t € R} does not exist. By multiplying (68) with zi% prior to taking
T

the limit, it leads to:

21
lim L. —EUXT H: lim - [1—HJRX(r)exp(—ian

T—>w0 27T 2T

T—ow 2w 2T o7

L 2T
=—- lim j Ry (7)exp(—iwz)dr +

27 T—)oo_ZT
2T | |

= . lim %Rx(r)exp(—ia)r)dr:

27 T—)oo_2T

1 Tl |
=Sy (o)-—=—- lim | —Ry(7r)exp(-iwz)dr

27T T—x o7 2T

It can be shown (see [4]) that whenT — oo :
2T
j |2L|-RX (7)-exp(—iwr)dr —0
T
2T
and consequently:

Sy (@)==—- lim —EDX H
X 27r w2l |7

(69)

(70)

(71)

Remark: The physical significance of the function S y (w) is revealed by (71) since the quantity

~ 2
%E DX T (a)X } is a measure of average energy at frequency o, in the interval [— T, T ] That is

also the reason why S y (w) is called power spectral density function of the random process

{x.(z)teR}

Suppose that the random process {X,(¢), € R} is sampled at N points, Xg,Xq,...,

Xy_1 and

that these points span a range of time 7 =(N —1)*As. The definition of the periodogram
estimator 0Of Sy (w) relies on the formula (71), where the expectation and the limit operations
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are neglected, since they cannot be done when we have only the sample Xg, X3,...,Xy_1 of the

process.
Hence the periodogram is defined as:
A N-1 2
Splw X, exp(—ion 72
p(0)= 5y 2 Xy exp(-ion) 72)

In practice it is not possible to evaluate S,(w) over a continuous range of frequencies. Hence,

for the purpose of computing, the frequency variable must be sampled. The sampling scheme
most commonly used is:

o, =%”k, ke{0d,...,N-1}

N-1
X (o X, exp(—ioyn), kei0,...,N-1 73
() = J— Z (<ieogn), ke ) (73)
is the Discrete Fourier Transform of the sample time-series, then:

So(0) =X kefod..N-1 (74)

The most important question that arises is how good the estimation of the power spectrum
through the periodogram is. The answer is treated in detail in the literature [8] and it can be
summarized as follows: the periodogram is an asymptotically unbiased estimator, but, in general,
it is not a consistent estimator for the PSD, because its variance does not become smaller as the
number of samples used in computation increases.

Remark: If the biased estimator for the auto-correlation function is used, then the periodogram
and correlogram estimators are identical:

Sp(@)=Sc (o) (75)
In order to improve the estimator of the PSD, different windowing techniques can be applied.
The one used in this paper was based on the application of a general window to the time series,
prior to computing the periodogram (modified periodogram). The Discrete Fourier Transform of
the windowed time series is:

N-1
ZX w, exp( la)kn) ke{O,l,...,N—l} (76)

/4
()= 2
where the values of the Wlndow functlon w,, change smoothly from 0 to a maximum and then

back to 0, as n ranges from 0 to N-1. In this case the windowed PSD estimator is:

Sunal@)=F(@,), kefol.. .N-1} (77)
In this paper the following functions were used as window function:
Bartlett window — w, =1— M (78)
(N-1)/2
Hann window — w, = ;{1 COS( Zﬂnlﬂ (79)

and
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. G(n (NN—l)/ZJZ+6[n—(NN—1)/2J3’
2(1_ n—(N—l)/ZJS'
N

Parzen window — w,, =

(80)

forn=01,.,N-1

5. Numerical Applications

This section of the paper is concerned with the simulation of the stationary processes, using the
formulas (47) and (61). Two numerical examples of stochastic stationary processes are
presented. The first example considered a second-order stochastic stationary process with a
known analytical one-sided PSD and corresponding ACF. The accuracy and convergence of the
two sets of N, =100 samples are verified, each being generated by using both simulation

formulas (47) and (61). The mean PSD and ACF of the samples of both ensembles are then
compared with the theoretical values. The second example is more complex and consists in using
the stationary zone of the strong motion of the recorded NS acceleration at INCERC during the
1977 Vrancea earthquake. The corresponding PSD is calculated. In order to obtain a smoother
function for the real spectrum, a specific barrier model (SBM ) spectrum type is fitted to it and
used to generate two sets of N,,, =1000 samples, each by employing the simulation formulas
(47) and (61). The numerical series for both ensembles are compared with the earthquake. All
the numerical computation was carried out by means of Matlab code and functions [12].

5.1. Verification of the Simulation Relations

The theoretical PSD, S;,(w), recollected from [10], expressed as:

1
Si(@)=~ 0 -exp(-0) (81)
and its corresponding ACF, R,(7), obtained from the integral relation (12):

ﬂz( ) = ]- 23 IT 3

(1+7%)

are used to verify the accuracy of the generation of the stationary processes algorithms described
above by (47) and (61) formulas. The convergence of the simulation is also verified by using
first a number of N, =100 generated samples and, then, later, N, =1000 generated

(82)

samples. For each generated sample, Xi(t), the corresponding PSD estimators, Si(co) and

Sﬁvmd(a)), and the autocorrelation function R'(r) are calculated. At the end of the samples

generation, the theoretical spectrum Sth(a)) and the mean of PSD of the samples ensemble
calculated for both estimators:

&en éen

; E[Swmd ] Z Wmd (83)

el 3

are compared in a graphical manner.
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Two series of figures are reproduced, as the result of numerical generation of N, =1000

samples employing (47) and (61), respectively. The other numerical parameters are T =40s,
At =0.01 and Nyquist frequency fy,, =50Hz.

Both series are illustrated in the following order: (1) - a generated sample, (2) - verification of
the Gaussian distribution of the generated sample using the sample histogram, (3) - the plot of
the theoretical PSD versus the mean PSD of the samples ensemble and the mean windowed
Barlett PSD of the generated samples, (4) - the plot of the theoretical PSD versus three mean
windowed (Parzen, Barlett and Han) PSDs of the samples ensemble and (5) - the plot of
theoretical ACF and mean ACF of the generated samples.
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Fig. 2 - Histogram and Gaussian Distribution
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From the figures presented above it can be concluded that similar results are obtained using both
simulation formulas (47) and (61) and the usage of N, =1000 samples lead to good numerical

convergence.

5.2. Simulation of INCERC 1977 NS Component Strong Motion Stationary Zone

The NS component of the 1977 Vrancea earthquake registered at INCERC, in Bucharest,
Romania is used to obtain the stationary time series of the strong motion. By definition the
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strong motion is represented by the time series located between 5% and 95% of the Arias
intensity diagram. The methodology used to obtain the stationary part of the strong motion
accelerogram is described in detail in [11]. The stationary time series is illustrated in Figure 6

acceleration [rmfsz]

i i i i i i i i
o 2 4 B &1 10 12 14 16 18
time [=]

Fig. 6 - Stationary Part of NS Vrancea 1977 Accelerogram

The stationarity of this time series is verified and a slight error from the stationarity is found at
both ends. The Fourier Spectrum of the real stationary time series is replaced by a smoother
specific barrier model (SBM) spectrum, which is conserving the signal total energy. The
characteristics of the SBM spectrum are developed by Aki ([5], [6]), while the detailed fitting
methodology for Vrancea source is presented in [11]. The two PSDs are shown in Figure 7.
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Fig. 7 - Real PSD versus SBM PSD for NS Vrancea 1977 Accelerogram

The generation of the stationary time series employing the formula (47) or (61) is conducted
using a number of N,,, =1000 generated samples by using the SBM calculated PSD. For each

sample X i(t) the corresponding PSD estimators, Si(a)) and Sivmd(a)), are calculated. The
theoretical SBM S,h(a))PSD with the mean of the sample PSD of the generated ensembles are

compared. The numerical results obtained employing (47) and (61) formulas are shown in
Figures 8 - 11, respectively. The figures contain the following plots: (8) - a generated sample, (9)
- verification of the Gaussian distribution of the generated sample using the sample histogram,
(10) - the plot of the theoretical SBM PSD versus the mean PSD of the samples ensemble and the
mean windowed Barlett PSD of the generated samples and (11) - the plot of the theoretical SBM
PSD versus three mean windowed (Parzen, Barlett and Han) PSDs of the samples ensemble.
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Fig. 11 - Theoretical SBM PSD and mean PSD of the Samples Ensemble

As in the previous case, from the figures presented above one can conclude that similar results
are obtained using both simulation formulas (47) and (61). The usage of N, =1000 samples

leads to a good numerical convergence.

6. Conclusions

The spectral representation of a stationary process was defined and two simulation formulas of
stationary Gaussian processes, based on this representation, were explicitly derived and
discussed. Two applications were used to evaluate the performance of both formulas and from
both test applications it can be concluded that similar results are obtained using the simulation
formulas (47) and (61). The usage of Ny, = 1000 samples conduct to a good numerical
convergence. Also, it is obvious for both numerical applications that no significant differences
were found between the different estimators of the PSD used. The above presented numerical
investigation leads to the general conclusion that the simulation formulas derived from the
Spectral Representation Theorem provide simple, efficient, and accurate methods to generate
random samples for stationary Gaussian processes.
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