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Abstract: The paper presents the Spectral Representation Theorem of a stationary process and two 
simulation methods derived from it. In order to test the accuracy of the two simulation methods two 
numerical applications are employed. First, using a theoretical power spectral density (PSD), two 
sets of sample functions, corresponding to each method, are generated and a comparison of the 
obtained numerical results with the analytical PSD is carried out. The second example is more 
complex and consists in using the stationary zone of the strong motion of the recorded NS 
acceleration registered at INCERC during the 1977 Vrancea earthquake. The corresponding Fourier 
Spectrum is calculated. In order to obtain a smoother PSD representation for the real Fourier 
spectrum, a specific barrier model spectrum (SBM) is fitted to it and the corresponding PSD 
calculated. This PSD is used to generate two sets of samples. The mean PSD obtained using both 
methods of simulation is compared with that characterizing the registered acceleration. The paper 
shows that the generated time series possess all the theoretical probabilistic characteristics 
discussed below, when the number of terms used in the simulation formulas is large. Three types of 
estimators are employed in the numerical evaluation of both simulation methods  

Keywords: Stationary Gaussian processes, spectral representation, simulation methods, specific 
barrier model (SBM) 

1. Introduction 

The modern dynamic analysis of the civil structures is conducted considering the randomness of 
the material and applied loads. In the absence of the general analytic solution of the differential 
stochastic nonlinear system, Monte Carlo type methods are employed and, consequently, 
samples of the stochastic time-series for both, material and loads must be generated. The most 
damaging type of loading, the earthquake induced loads, are known to have the characteristics of 
a non-stationary stochastic process. In this paper, the first approximation of such complicated 
process, the Gaussian second-order stationary processes simulation is discussed. From the 
theoretical point of view, the subject of the stationary stochastic processes is extremely well 
researched and documented in many reference books of mathematical notoriety [1, 2, 3, 7]. On 
the contrary, from the practical point of view, progress in the domain of interest of structural 
engineering and modern applied mathematics has been slow and the knowledge limited, until 
1990, when a proliferation of research work was noted, being emboldened by the usage of the 
Monte Carlo methods. Applications of stationary processes in the field of engineering can be 
found in [9, 10]. The intent of the present article is to go from the theoretical knowledge to the 
practical application of the Gaussian second-order stationary processes and, consequently, a 
general methodology is presented. It must be emphasized that one of the most stringent problems 
arising in the generation of a stationary stochastic process   R, ttX  using the Spectral 
Representation Theorem, is the knowledge, in analytical or numerical form, of the power 
spectral density (PSD), denoted  XS , characterizing the process. This is not a simple 
problem, since, in most of the cases, the process is represented by only one registered sample, 
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with finite length  Tt ,0 . In the absence of the PSD representative for the process, one is forced 
to assume the ergodicity of the process, considering that the registered sample probabilistic 
proprieties are similar to those of the process. In this case, it is clear that only an estimator of the 

real PSD can be found,  XŜ . This paper addresses the numerical simulation of the Gaussian 
stationary time series employing two methods directly derived from the Spectral Representation 
Theorem of the stationary stochastic processes. Two simulation methods are presented and their 
accuracy is established using three types of estimators of the generated ensemble mean PSD. In 
order to test the accuracy of the two simulation methods two numerical applications are presented: 
first, a comparison of an analytical PSD with the obtained numerical results is carried out, and, 
then, a simulation of the stationary time series corresponding to the stationary part of the recorded 
NS acceleration component of Vrancea 1977 earthquake, registered at INCERC in Bucharest. All 
numerical applications are conducted using the code developed in Matlab [12] by the authors. 

2. Stationary Stochastic Processes. Mathematical Background 

Surveying the existing technical literature [1, 2, 3, 7], one is faced with a large variety of 
notation and interpretation of the main theoretical developments and results of the theory. In 
order to clarify the theoretical aspects related to the main scope of the present paper and to have 
clear definitions and notations, a number of important theoretical aspects related to the theory of 
the second-order stationary stochastic processes are stated herein without proofs. Our interest is 
concentrated toward the case of the spectral representation of the real-valued one-parameter 
second-order stochastic process, denoted as   R, ttX r . The continuous parameter is 
represented by the time t. 

Definition 1: A stochastic process   R, ttX  is a family of random variables indexed by the 
real continuous parameter t and defined on a common probability space. All those random 
variables have an identical distribution. 

The range of the time index t is theoretically   , , but practically, for any physical 
phenomenon, it is limited to  T,0 . For mathematical reasons, the general case of the complex-
valued process is considered first and the results are then particularized to the case of the real-
valued process, i.e. the class of processes of interest in engineering applications. The 
mathematical generality is further restrained to the subcategory of stochastic processes with first 
and second order finite moments, called second-order or correlation-stationary processes. 

A complex-valued second-order stochastic process of continuous parameter t is considered: 

   tXitXtX imr  )(  
(1)

where 1i  is the imaginary number. Three important functions, deterministic in nature, 
characterizing the random process   R, ttX , the mean, auto-covariance and auto-correlation 
functions are defined as follows: 

Definition 2: The mean function of   R, ttX , representing the first moment of the finite-
dimensional distribution ),( txPX  is expressed as: 

            tXiEtXEtiXtXEtXEt imrimrX  )()(  
(2)

where the symbol  E  represents the ensemble average operator, while  )(tX r  and   tXim  are 

two real-valued stochastic processes. 

The function  tX  is a deterministic function of t. 
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Definition 3: The auto-covariance function )(CF , representing the centered second moment of 
the finite-dimensional distribution ),( txPX , is expressed as: 

        
     2121

221121

)()(

)()(,

tttXtXE

ttXttXEtt

XX

XXX











(3)

where    indicates a complex conjugated value. 

The covariance function  21, ttX  is also a deterministic function. 

Definition 4: The auto-correlation function )(ACF  of the process   R, ttX  is defined as: 

   )()(, 2121 tXtXEttRX
 (4)

It must be emphasized that the functional relation between the auto-covariance (3), the mean (2) 
and auto-correlation (4) functions indicates that only the knowledge of two of them is sufficient 
for applications. 

Definition 5: The variance function is a particular case of (3) where ttt  21  

         
     tttXtXE

ttXEtttXV

XX

XXX

 







)()(

,
2

(5)

The variance function   tXVX  is also a finite deterministic function for all t. 

A special class of random processes, important for practical applications, is the class of 
stationary random processes defined below. 

Definition 6: A stochastic process   R, ttX  is strictly stationary if for any set of indexes 

nttt ,...,, 21  and any real number k , the joint probability distribution of       ntXtXtX ,...,, 21  is 

identical with the joint probability distribution of       ktXktXktX n  ,...,, 21 . 

The above definition indicates that the probabilistic structure of a stationary process is invariant 
under time variable t translation. Constraining the process to strict stationarity is usually a too 
strong requirement for practical applications, and, consequently, a weaker form of stationarity, 
called wide sense stationarity, is used. 

Definition 7: A stochastic process   R, ttX  with   



 2tXE  is said to be wide sense 

stationary (second-order stationary or correlation-stationary) stochastic processes if: 

  constanttX    (6)
and 

      XXX RttRttR 2121, (7)
where  12 tt  and 12 tt  . 
Remark: According to (6) and (7) the wide sense stationary stochastic process is characterized 
by a constant mean and an auto-correlation function dependent only on the time difference 
between two particular times 1t  and 2t . Then, the variance (5) of the process becomes time 
independent: 

    0XX tXV   (8)
By interchanging 2t  with 1t  within (7): 

     2 1 2 1 2 1, ( ) ( )X X XR t t E X t X t R t t R        (9)

and consequently: 

     XX RR  
(10)
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For the remaining of this paper only second-order stationary processes are considered. Two 
theorems of practical significance for the application of the second-order stationary stochastic 
processes, namely the Wiener-Khintchine Theorem and the Spectral Representation Theorem, 
are stated below. For generality, the relations are first expressed as Fourier-Stieltjes integral, and, 
later, considering only differentiable functions, they are converted to Riemannian integral 
format. Both theorems apply to the stochastically continuous stationary process, so the continuity 
concept is defined first. 

Definition 8: A stochastic process   R, ttX  is stochastically continuous at 0t t  

(continuous in the mean) if: 

    
0

2
0lim 0

t t
E X t X t


    

 

Theorem 1 (Wiener-Khintchine Theorem)[8]: A necessary and sufficient condition for  XR  
to be the auto-correlation function of some stochastically continuous stationary process 

  R, ttX , is that there exists a function  H , having the properties of a distribution 
function on   ; , (i.e.   ,0H    1H  and  H  non-decreasing) such that, for all ,  

 XR  may be expressed as: 

      dHiRX  



exp (11)

 H  is called spectral distribution function or integrated spectrum of the stationary process 
  R, ttX . 

Remark: If the function  H  is differentiable, then      ddHS X /  exists, and is called 
power spectral density (PSD) or power spectrum. Then (11) is expressed as a Riemannian 
integral: 

       dSiR XX  



exp (12)

which is the inverse Fourier transform of the power spectral density  XS . Reciprocally, the 

power spectral density function  XS  is expressed as the Fourier transform of the  auto-
correlation function  XR : 

      


 dRiS XX  



exp

2

1
 (13)

Remark: The power spectral density function of the process   R, ttX  has the following 
properties: 
1)   XS  is a real function and   0XS ; 
2) If the process   R, ttX  is real, then  XR  is real and even. Therefore  XS  is also an 

even function: 
     XX SS  

called two-sided PSD. In practical applications one often uses only the positive side of the 
power spectrum. The one-sided spectral distribution denoted by  G  is given as: 

   







0 ,2

0         ,0





XS

G
 

3) If 0  in (12) then: 

     )(0 2 tXERdS XX 





 
Thus, the total area under  XS  equals the "average power" of the process   tX . 
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Theorem 2 (Spectral Representation Theorem): Every stochastically continuous wide sense 
stationary process   R, ttX  with zero-mean, 0X , has the spectral representation:  

      dZtitX  



exp (14)

where   is the angular frequency and   Z  is a complex-valued spectral stochastic process 
with orthogonal increments, characterized by the following properties for all   and  : 

   0dZE  (15)
and 

         dHdZdZE  (16)

where    is the Dirac delta function. 

Remark: The qualitative analysis of the relations (11) and (14) conduct to a few interesting 
conclusions: 

1) Any stationary process   R, ttX  and its auto-correlation function  tRX  can be 
additively built up by elementary and mutually orthogonal harmonic oscillations, 

    dZti exp  and     dHti exp , respectively. The difference consists only in the 
physical nature of the resulting expressions, (11) and (14), which are deterministic and 
random, respectively; 

2) To have a physical interpretation of  ,dH  (14) must be written in a different form: 

        

      



dZdZti

dZidZtitX
















argexp

)argexp(exp
(17)

where          2/122 ImRe  dZdZdZ   and      
   .

Re

Im
arctanarg 













dZ

dZ
dZ  This 

equivalent form of (14) indicates that any second-order stationary process can be 
represented as the limit of a sum of oscillatory functions, with random amplitudes  dZ  

and random phase angles   .arg dZ  In the particular case    , equation (16) becomes 

    dHdZE 



 2 , therefore  dH  is the mean square amplitude of the   frequency 

component in )(tX . 
3) The relations (9) and (12) indicate that the auto-covariance structure of a stationary process 

  R, ttX  is determined by its PSD. Thus, given a positive function  ,XS  or, 
equivalently, a positive-definite function  ,XR  one can define a stochastic process 

  R, ttX  characterized by  XS  as PSD or  XR as auto-correlation.  

3. Generating Real Gaussian Stationary Stochastic Processes 

For practical application is necessary to convert the integral relation (14) to a form able to 
generate proper samples of the process   ),0(, TttX  . Analyzing the spectral decomposition 
(14) it is clear that the theoretical ways of generating processes   Z  with orthogonal 
increments must be emphasized. Consequently, the relation (14) can be further developed: 

        

         



imrimr

imr

dZtdZtidZtdZt

idZdZtittX
















cossinsincos

sincos

 

(18)
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where       ZZr Re  and       ZZim Im  are two spectral real processes with 

orthogonal increments. 

For a real process   R, ttX r , the case in point of the main physical applications, equation (18) 
becomes: 

        imrr dZtdZttXtX  



sincosRe)( (19)

Then  ,)( tXtX rr
  for any ,t  which leads to the following (see [2]):  

     dZdZ  
(20)

Consequently, for any    

     rr dZdZ  (21)

     imim dZdZ (22)

Substituting (21) and (22) into the equation (19): 

     imrr dZtdZttX  


sincos2)(
0

(23)

Expanding (15) and (16), results that for any 0 , the processes  rZ  and  imZ  have to 

satisfy the following properties [2]:  

   0,0  rdZE  (24)
   0,0  imdZE  (25)

     0,for  ,0   imr dZdZE (26)
 

         0,for  ,
2

1
  dSdZdZE Xrr (27)

         0,for  ,
2

1
  dSdZdZE Ximim

 
(28)

The two orthogonal differences  rdZ  and  imdZ  of the spectral stationary processes can be 

expressed as: 
     )(1  ZfdZ rr  (29)
     )(2  ZfdZ imim  (30)

where    is a real function of   ,  1Zfr  and  2Zfim  are two real functions of random 

variables )(1 Z  and )(2 Z , respectively. 

Remark: The restrictions (24) through (28) imposed upon  rdZ  and  imdZ , do not 

indicate a significant restriction on the functions  1Zfr  and  2Zfim  and/ or random variables 

)(1 Z  and )(2 Z  classes. For practical reasons, only simple forms of functions and elementary 
distributions for )(1 Z  and )(2 Z  are employed herein.  

Two methods are discussed below, based on two different cases of expressing  rdZ  and 

 imdZ : 

 Method I:  
Let   )()( 11  ZZfr   and   )()( 22  ZZfim  . Then (29) and (30) become: 

    )(1  ZdZ r   (31)
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    )(2  ZdZ kim   (32)
The expressions (31) and (32) must satisfy (24) trough (28). From (24) we have, 

      0)(0)( 11   ZEZE  (33)

Similarly, from (25) 

      0)(0)( 22   ZEZE  (34)

Rewriting the restriction (26) using (31) and (32) it results that: 

    
      



0)()(

0)()(

21

21




ZZE

ZZE

 
 

  0)()( 21  ZZE  (35)

The condition (27), for    becomes 

    
      



0)()(

0)()(

11

11




ZZE

ZZE

 
(36)

  0)()( 11  ZZE  (37)

For    (27) can be written as 

           )()(
2

1 2
1

22
1

22  ZEZEdZEdS rX 
 

(38)

Similarly, from (28), for    

  0)()( 22  ZZE  (39)

If   , (28) can be written as 

        )(
2

1 2
2

22  ZEdZEdS imX 
 

(40)

From (38) and (40) one restriction is imposed, namely: 

   )()( 2
2

2
1  ZEZE   (41)

In this case, the expression of the initially unknown function )(  results: 

 
2/1

2
1 )(2

)(
)( 
















ZE

dSX  (42)

Remark: 

a) Due to (33) and (34) the random variables )(1 Z  and )(2 Z  must have zero mean. We may 
choose for this reason, )(1 Z  and  1,0)(2 NZ   or  ,, aaU   where a  is an imposed 
interval limit; 

b) Relation (35) is true if the random variables )(1 Z  and )(2 Z  are independent for any   
and  ; 

c) The relation (37) is true if )(1 Z  and )(1 Z  are independent for any .   Similarly, 
(39) is true if )(2 Z  and )(2 Z  are independent for any   ; 

d) The possibility of using the uniform distribution  aaU ,  is eliminated due to the fact that 
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by choosing a particular value for the limit a, we impose a restriction on the coefficients of 
terms  tcos  and  tsin  in (19); 

e) The only choice remaining is )(1 Z  and  1,0)(2 NZ  , with )(1 Z  and )(2 Z  
independent identical distributed random variables. In this case the relations (33) through 
(37), (39) and (41) are satisfied. Under the above condition, from (42), the deterministic 
function )( , is expressed as:  

2/1

2

)(
)( 








 dSX (43)

Consequently, the final expression of (23) becomes: 

       21
2/1

0
sincos)(2)( ZtZtdStX Xr  


(44)

If one denotes   1)( ZA   and   2)( ZB  , then (44) becomes: 

       BtAtdStX Xr  


sincos)(2)( 2/1
0

(45)

with )(A  and  ,1,0)( NB   i.i.d (independent, identical distributed) random variables.  

The simulation of the stationary process, based on the formula (45), can be conducted by 
replacing the integral by the following infinite series: 

      kkkkkX
k

r BtAtStX 



 sincos2 2/1

0
(46)

where   kk  and ,0   ,kk AA    kk BB  . For practical applications where the 

computation cannot employ an infinite summation, the process )(tX r  will be approximated by 
the finite sum: 

      kkkkkX

N

k
r BtAtStX 


 sincos2 2/1

0
(47)

for a large  N, such that   NN  is an upper cut-off frequency beyond which )(XS  may be 

assumed to be zero, for physical reasons. The number N remains to be established from 
numerical evaluation.  

Remark: The process )(tX r  obtained using (47) is a Gaussian process, since kA  and kB  are 

Gaussian random variables [9]. 

 Method II:  

Let )cos(rf  and ).sin(imf  Then, for any   the expressions (29) and (30) become: 

     )(cos 1  ZdZ r  (48)
     )(sin 2  ZdZ kim   (49)

The expressions (48) and (49) must satisfy (24) through (28). From (24) results: 
        0)(cos0)(cos 11   ZEZE  

or equivalently: 

  0)(cos )(1





dzzPz Z  (50)

Similarly, (25) implies: 
        0)(sin0)(sin 22   ZEZE  

or 

  0)(sin )(2





dzzPz Z  (51)
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where )()(1
ZP  and )()(2

ZP  are the probability density functions for )(1 Z  and )(2 Z , 

respectively. Due to the fact that the random variables )(1 Z  and )(2 Z  play the physical role 
of an angle and the relations (50) and (51) must be satisfied, they are considered to be uniformly 
distributed ~  2,0U . Then: 



 


otherwise

z
zPzP ZZ ,0

20,2/1
)()( )()( 21




 
and (50) and (51): 

       0cos
2

12

0
  dzzdZE r 




(52)

       0sin
2

12

0
  dzzdZE im 




(53)

are indeed verified. 
Rewriting the restriction (26) using (48) and (49) it results that: 

        
        

     0)(sin)(cos

0)(sin)(cos

0)(sin)(cos

21

21

21









ZZE

ZZE

ZZE

(54)

If )(1 Z  and )(2 Z  are independent random variables, for any   , then: 

          

    0sin
2

1
cos

2

1

)(sin)(cos)(sin)(cos

2

0

2

0

2121





 zdzdzz

ZEZEZZE






 

(55) 

therefore the relation (54) is satisfied. 
The condition (27), for   , becomes: 

        
        

     0)(cos)(cos

0)(cos)(cos

0)(cos)(cos

11

11

11









ZZE

ZZE

ZZE

 
Assuming that )(1 Z  and )(1 Z  are independent random variables, for any   : 

          

    0cos
2

1
cos

2

1

)(cos)(cos)(cos)(cos

2

0

2

0

1111





 zdzdzz

ZEZEZZE






 
and (27) is satisfied. The condition (28), for   , becomes: 

     0)(sin)(sin 22  ZZE  
If )(2 Z  and )(2 Z  are assumed to be independent random variables, for any   :  

          

    0sin
2

1
sin

2

1

)(sin)(sin)(sin)(sin

2

0

2

0

2222





 zdzdzz

ZEZEZZE






 
therefore (28) is satisfied. 
For    the restriction imposed by (27), can be written as: 

     

        

     












222

0
2

)(
22

1
22

2
1

22

2

1
cos

2

1

)(cos)(cos

)(cos
2

)(

1









 












dzz

dzzPzZE

ZEdZE
dS

Z

r
X

 

(56)
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Similarly, (28) gives: 

    22

2

1

2

)(




 im

X dZE
dS

 
The expression of the deterministic function    obtained from (56) is: 

    2/1)(  dSX  (57)

Therefore, the final expression of (23) for this case becomes: 

      )(sinsin)(coscos)(2)( 21
2/1

0
 ZtZtdStX Xr  



 
(58)

If we denote    1cos)( ZA   and  ,)(sin)( 2  ZB   it results that (58) is similar with the 
formula (45) from case I. 

Remark: If )()()( 21   ZZ , with )(  uniformly distributed in  2,0 , and )(  and 
)(  are independent for any ,   then )(  has the physical interpretation of a random phase.  

The final expression of (58) is: 

         sinsincoscos)(2)( 2/1
0

 


ttdStX Xr
 

(59)

or equivalently: 

      


tdStX Xr cos)(2)( 2/1
0

(60)

The simulation of the stationary process )(tX r  used in the applications is based on the 
approximation of the formula (60). As in the previous case, )(tX r  can be approximated by the 
finite sum: 

    kkkX

N

k
r tStX  


cos22)( 2/1

0
(61)

where   kk  and for a large N, such that   NN  is an upper cut-off frequency beyond 

which )(XS  may be assumed to be zero, for physical reasons.   

Remark: The process )(tX r  obtained using (61) is asymptotically Gaussian as N , due to 
Central Limit Theorem [9]. 

4. Power Spectral Density Estimation 

One important problem of generating samples of the stationary stochastic process using the 
formulas (47) or (61), is the accurate estimation of the power spectral density  XS  of the original 

process. In many practical cases, from a singular sample of a recorded time-series, ,,...,, 110 NXXX

of an assumed second-order stationary stochastic process, an estimator  XŜ  of the real power 

spectral density )(XS  is obtained.  It is desirable that the calculated estimator  XŜ  be as close 
as possible to the real ).(XS  There are two general approaches to the PSD  estimation problem: 
parametric and nonparametric. In the following subsections, three non-parametric estimators: the 
correlogram, the periodogram, and the windowed periodogram are utilized. 
Having in mind the statistical estimation of the PSD, a few concepts used to characterize an 
estimator will be defined next. These concepts are bias, variance and consistency. 

If  XŜ  is the estimator of )(XS , the difference between the mean of the estimate,   XSE ˆ , 
and its true value, )(XS  , is called the bias 

     XXS SESB ˆ  
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Thus, if the mean of an estimate is equal to the true value, it is considered to be unbiased and 
having a bias value equal to zero. 

The variance of an estimator effectively measures the width of the probability density and is 
defined as 

      



 

22 ˆˆ  XXS SESE
 

If the bias and variance both tend to zero as the number of observations become large, the 
estimator is said to be consistent. This implies that the estimator converges in probability to the 
true value of the quantity being estimated, as N becomes infinite. 

4.1. The Correlogram Method  

The calculation of the power spectral density function estimator  XŜ  of the process 
  R, ttX r  using the process ACF  function starts by approximating the PSD from relation 

(13) by: 

 1
( ) exp( )

2X XS i R


  





  (62)

Suppose that the real stochastic process   R, ttX r  is sampled at N points, ,,...,, 110 NXXX  

and that these points span a range of time tNT  )1(  , where t  is the sampling time 
interval. First, the ACF of the recorded time-series is calculated using the standard unbiased 
estimate: 

   1,,1,0,
1ˆ

1

0




 



 NXX

N
R

N

n
nnX 






 (63)

or the standard biased estimate: 

   1N,,1,0,XX
N

1
R̂

1N

0n
nnX  




   (64)

Then, if the sum in (62) it is truncated to N terms only and  XR  is replaced by either (63) or 

(64)  XR̂  estimator, the PSD estimator  CŜ , called correlogram, is expressed as: 

   
 

 






X

N

N
CX RiSS ˆ)exp(

2

1ˆˆ
1

1

 



(65)

4.2. The Periodogram Method  

As demonstrated in [4], a second-order weakly stationary random process does not possess a 
Fourier transform. A proof of that statement is presented here. The truncated Fourier transform 
of a sample function of   R, ttX r  be expressed as: 

     



T

T

rT dttitXX  exp
~

(66)

The existence in mean square of  TX
~

 is possible if and only if [4]:  

          
 


T

T

T

T
XTT dtdtttittRXXE 2111221221

* exp
~~ 

 

(67)
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is bounded for any 1  and 2 . After changing the integration order and denoting 12 tt  : 

     

   

   

     

1

1

2
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1
0

0

1
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2

2
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exp
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2 exp

T tT

T X
T T t

T T

X
T

T

X
T T

T

X
T

E X R i d dt

R i dt d

R i dt d

T R i d





   

  

  

   



  





  



      

 
   
 
 
 
   
 
 

  

 

 

 





(68)

The last integral of (68) is divergent for T  and, therefore, the Fourier transform of the 

stationary process   R, ttX r  does not exist. By multiplying (68) with 
1 1

2 2T
  prior to taking 

the limit, it leads to: 
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(69)

It can be shown (see [4]) that when T :  

   
2

2

exp 0
2

T

X
T

R i d
T


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

    (70)

and consequently: 

    21 1
lim

2 2X T
T

S E X
T

 
 

     
  (71)

Remark: The physical significance of the function )(XS  is revealed by (71) since the quantity 

  



 2~

2

1 TXE
T

 is a measure of average energy at frequency  , in the interval  TT , . That is 

also the reason why )(XS  is called power spectral density function of the random process 
  R, ttX r  

Suppose that the random process  R),( ttX r  is sampled at N  points, 110 ,...,, NXXX  and 

that these points span a range of time   tNT  1 . The definition of the periodogram 
estimator  of )(XS  relies on the formula (71), where the expectation and the limit operations 
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are neglected, since they cannot be done when we have only the sample 110 ,...,, NXXX   of the 

process. 
Hence the periodogram is defined as: 

   
21
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1ˆ exp
2
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P n
n

S X i n
N

 





   (72)

In practice it is not possible to evaluate  PŜ  over a continuous range of frequencies. Hence, 
for the purpose of computing, the frequency variable must be sampled. The sampling scheme 
most commonly used is: 

 1,,1,0,
2

 Nkk
Nk 
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X X i n k N
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


      (73)

is the Discrete Fourier Transform of the sample time-series, then: 

     1N,,1,0k,X
~

Ŝ
2

kkP   (74)

The most important question that arises is how good the estimation of the power spectrum 
through the periodogram is. The answer is treated in detail in the literature [8] and it can be 
summarized as follows: the periodogram is an asymptotically unbiased estimator, but, in general, 
it is not a consistent estimator for the PSD, because its variance does not become smaller as the 
number of samples used in computation increases.  

Remark: If the biased estimator for the auto-correlation function is used, then the periodogram 
and correlogram estimators are identical:  

    CP SS ˆˆ   (75)

In order to improve the estimator of the PSD, different windowing techniques can be applied. 
The one used in this paper was based on the application of a general window to the time series, 
prior to computing the periodogram (modified periodogram). The Discrete Fourier Transform of 
the windowed time series is: 
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1
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k n n k
n

W X w i n k N
N

 





      (76)

where the values of the window function ,nw  change smoothly from 0 to a maximum and then 

back to 0, as n ranges from 0 to N-1. In this case the windowed PSD estimator is: 

     1,,1,0,
~ˆ 2

 NkWS kkwind  (77)

In this paper the following functions were used as window function: 
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and 
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for 1,...,1,0  Nn  

5. Numerical Applications 

This section of the paper is concerned with the simulation of the stationary processes, using the 
formulas (47) and (61). Two numerical examples of stochastic stationary processes are 
presented. The first example considered a second-order stochastic stationary process with a 
known analytical one-sided PSD and corresponding ACF. The accuracy and convergence of the 
two sets of 100genN  samples are verified, each being generated by using both simulation 

formulas (47) and (61). The mean PSD and ACF of the samples of both ensembles are then 
compared with the theoretical values. The second example is more complex and consists in using 
the stationary zone of the strong motion of the recorded NS acceleration at INCERC during the 
1977 Vrancea earthquake. The corresponding PSD is calculated. In order to obtain a smoother 
function for the real spectrum, a specific barrier model ( SBM ) spectrum type is fitted to it and 
used to generate two sets of 1000genN  samples, each by employing the simulation formulas 

(47) and (61). The numerical series for both ensembles are compared with the earthquake. All 
the numerical computation was carried out by means of Matlab code and functions [12]. 

5.1. Verification of the Simulation Relations  

The theoretical PSD,  thS , recollected from [10], expressed as: 

  )exp(
2

1 2  thS (81)

and its corresponding ACF, )(thR , obtained from the integral relation (12): 
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(82)

are used to verify the accuracy of the generation of the stationary processes algorithms described 
above by (47) and (61) formulas. The convergence of the simulation is also verified by using 
first a number of 100genN  generated samples and, then, later, 1000genN  generated 

samples. For each generated sample, ),(tX i  the corresponding PSD estimators, )(iS  and 

),(i
windS  and the autocorrelation function )(iR  are calculated. At the end of the samples 

generation, the theoretical spectrum  thS  and the mean of PSD of the samples ensemble 

calculated for both estimators:  
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are compared in a graphical manner. 
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Two series of figures are reproduced, as the result of numerical generation of 1000genN  

samples employing (47) and (61), respectively. The other numerical parameters are ,40sT   

01.0t  and Nyquist frequency .50HzfNyq   

Both series are illustrated in the following order: (1) - a generated sample, (2) - verification of 
the Gaussian distribution of the generated sample using the sample histogram, (3) - the plot of 
the theoretical PSD versus the mean PSD of the samples ensemble and the mean windowed 
Barlett PSD of the generated samples, (4) - the plot of the theoretical PSD versus three mean 
windowed (Parzen, Barlett and Han) PSDs of the samples ensemble and (5) - the plot of 
theoretical ACF and mean ACF of the generated samples. 

 

(a) Metod I Sample  (b) Method II Sample 

Fig. 1 - Generated Samples 

 

(a) Metod I Sample (b) Method II Sample 

Fig. 2 - Histogram and Gaussian Distribution 
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(a) Method I (b) Method II 

Fig. 3 - Theoretical PSD and mean PSD of the samples ensemble  

(a) Method I (b) Method II 

Fig. 4 - Theoretical PSD and mean PSD of the samples ensemble 

(a) Method I (b) Method II 

Fig. 5 - Theoretical ACF and mean ACF of the generated samples ensemble 

From the figures presented above it can be concluded that similar results are obtained using both 
simulation formulas (47) and (61) and the usage of 1000genN  samples lead to good numerical 

convergence. 

5.2. Simulation of INCERC 1977 NS Component Strong Motion Stationary Zone  

The NS component of the 1977 Vrancea earthquake registered at INCERC, in Bucharest, 
Romania is used to obtain the stationary time series of the strong motion. By definition the 
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strong motion is represented by the time series located between 5% and 95% of the Arias 
intensity diagram. The methodology used to obtain the stationary part of the strong motion 
accelerogram is described in detail in [11]. The stationary time series is illustrated in Figure 6 

 

Fig. 6 - Stationary Part of NS Vrancea 1977 Accelerogram 

The stationarity of this time series is verified and a slight error from the stationarity is found at 
both ends. The Fourier Spectrum of the real stationary time series is replaced by a smoother 
specific barrier model (SBM) spectrum, which is conserving the signal total energy. The 
characteristics of the SBM spectrum are developed by Aki ([5], [6]), while the detailed fitting 
methodology for Vrancea source is presented in [11]. The two PSDs are shown in Figure 7. 

 

Fig. 7 - Real PSD versus SBM PSD for NS Vrancea 1977 Accelerogram 

The generation of the stationary time series employing the formula (47) or (61) is conducted 

using a number of 1000genN  generated samples by using the SBM calculated PSD. For each 

sample )(tX i  the corresponding PSD estimators, )(iS  and ),(i
windS  are calculated.  The 

theoretical SBM  thS PSD with the mean of the sample PSD of the generated ensembles are 

compared. The numerical results obtained employing (47) and (61) formulas are shown in 
Figures 8 - 11, respectively. The figures contain the following plots: (8) - a generated sample, (9) 
- verification of the Gaussian distribution of the generated sample using the sample histogram, 
(10) - the plot of the theoretical SBM PSD versus the mean PSD of the samples ensemble and the 
mean windowed Barlett PSD of the generated samples and (11) - the plot of the theoretical SBM 
PSD versus three mean windowed (Parzen, Barlett and Han) PSDs of the samples ensemble. 
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(a) Method I Sample (b) Method II Sample 

Fig. 8 - Generated Sample using the SBM PSD 

  

(a) Method I Sample (b) Method II Sample 

Fig. 9 - Histogram and Gaussian Distribution 

(a) Method I (b) Method II 

Fig. 10 - Theoretical SBM PSD and mean PSD of the Samples Ensemble  
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(a) Method I (b) Method II 

Fig. 11 - Theoretical  SBM PSD and mean PSD of the Samples Ensemble 

As in the previous case, from the figures presented above one can conclude that similar results 
are obtained using both simulation formulas (47) and (61). The usage of 1000genN  samples 

leads to a good numerical convergence. 

6. Conclusions 

The spectral representation of a stationary process was defined and two simulation formulas of 
stationary Gaussian processes, based on this representation, were explicitly derived and 
discussed. Two applications were used to evaluate the performance of both formulas and from 
both test applications it can be concluded that similar results are obtained using the simulation 
formulas (47) and (61). The usage of ௚ܰ௘௡ ൌ 1000 samples conduct to a good numerical 
convergence. Also, it is obvious for both numerical applications that no significant differences 
were found between the different estimators of the PSD used. The above presented numerical 
investigation leads to the general conclusion that the simulation formulas derived from the 
Spectral Representation Theorem provide simple, efficient, and accurate methods to generate 
random samples for stationary Gaussian processes. 
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