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Weak solutions for generalized p-Laplacian systems via Young
measures
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Abstract. We prove the existence of weak solutions to a generalized p-Laplacian systems in degenerate
form. The techniques of Young measure for elliptic systems are used to prove the existence result.

2010 Mathematics Subject Classification. Primary: 35J50, 35J57, 35D30, 28Axx.
Key words and phrases. p-Laplacian systems, Weak solutions, Young measures.

1. Introduction

We study the existence of weak solutions u : Ω→ Rm, m ∈N, to the following Dirichlet problem:{
−div

(
φ(Du−Θ(u))

)
= f in Ω,

u = 0 on ∂Ω,
(1.1)

with
φ(A) = |A|p−2 A, ∀A ∈Mm×n.

Here Ω is a bounded open domain in Rn (n ≥ 2) and Mm×n is the set of m× n real matrices with reduced Rmn

topology, that is, if A ∈ Mm×n, then |A| is the norm of A when regarded as a vector in Rmn. Mm×n is endowed
with the scalar product A : B = AijBij (with the usual summation convention). We assume that p is a real number

such that p ∈ (1, ∞). The source term f is supposed lying in W−1,p′(Ω; Rm) the dual space of W1,p
0 (Ω; Rm) and

Θ : Rm →Mm×n is a continuous function satisfies

Θ(0) = 0 and |Θ(ξ)−Θ(η)| ≤ c|ξ − η| (1.2)
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for all ξ, η ∈ Rm, where c is a positive constant related to the exponent p and the diameter of Ω (diam(Ω)) by the
following:

c <
1

diam(Ω)

(1
2

) 1
p
.

For several decades, there have been intensive research activities for equations, or systems, of p-Laplacian type.
In [12], several examples of degenerate elliptic equations are presented. The author proved the existence of a weak
solution by various methods. Dibenedetto and Manfredi [4] considered the following nonlinear elliptic system
div(|Du|p−2Du) = div(|F|p−2D)), for F ∈ Lp

loc(Ω; Rm) and proved the existence of local weak solution and some
estimates of Du in [BMOloc(Ω)]Nm. In [10], the authors proved a regularity result for the quasilinear equation

div
(
(ADu.Du)

(p−2)
2 ADu

)
= div(|F|p−2F). They studied the regularity of F which reflected to the solutions under

minimal assumptions on the coefficient matrix A. A collect of some very recent pointwise bounds for the gradient
of solutions, and the solutions themselves, to the p-Laplace system with right hand side in divergence form were
discussed in [3].

In view of [9], our system −div
(
|Du − Θ(u)|p−2(Du − Θ(u))

)
= f is a nonlinear degenerate and singular

elliptic system according to the cases p > 2 and 1 < p < 2, respectively.
In the present paper, due to the term Θ in Eq. (1.1), we don’t have such Leray-Lions conditions and we can’t

use the main techniques as in [10]. Our aim here is to prove the existence of weak solutions by using the concept
of Young measures as technical tool to describe the weak limits of a sequence of approximating solutions. This
concept can be used when weak convergence does not behave as one desire with respect to nonlinear operators.

We say that u ∈W1,p
0 (Ω; Rm) is a weak solution to (1.1) if∫

Ω
φ
(

Du−Θ(u)
)

: Dϕdx :=
∫

Ω
|Du−Θ(u)|p−2(Du−Θ(u)) : Dϕdx

= 〈 f , ϕ〉

holds for all ϕ ∈W1,p
0 (Ω; Rm). Here 〈., .〉 denote the duality pairing between W−1,p′(Ω; Rm) and W1,p

0 (Ω; Rm).
The main result of this paper is the following:

Theorem 1.1. Suppose that Θ satisfies (1.2), then there exists at least one weak solution of the problem (1.1).

2. Preliminaries

Let Ω be a bounded open in Rn, n ≥ 2, with smooth boundary ∂Ω. Let 1 < p < ∞. Throughout this paper, we
will use the following Poincaré’s inequality (see [11, Lemma 2.2]), there exists a positive constant α = diam(Ω)
such that

‖v‖p ≤
α

2
‖Dv‖p, v ∈W1,p

0 (Ω; Rm). (2.1)

The relation (2.1) and the Hölder inequality are central to establish the required estimates to prove the desired
results.
We recall the following useful lemma:

Lemma 2.1 ([1]). Let ξ, η ∈ Rm and let 1 < p < ∞. We have
1
p
|ξ|p − 1

p
|η|p ≤ |ξ|p−2ξ.(ξ − η).

As mentioned in the introduction, we will use the concept of Young measure. Here, we give a brief review on
Young measure and some properties needed in this paper.

By C0(R
m) we denote the closure of the space of continuous functions on Rm with compact support with

respect to the ‖.‖∞-norm. Its dual space can be identified withM(Rm), the space of signed Radon measures with
finite mass. The related duality pairing is given by

〈ν, ϕ〉 =
∫

Rm
ϕ(λ)dν(λ).
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Note that 〈ν, id〉 =
∫

Rm λdν(λ).

Lemma 2.2. [7, Theorem 1.5.2] Let {zj}j≥1 be a bounded sequence in L∞(Ω; Rm). Then there exists a subsequence
{zk}k ⊂ {zj}j and a Borel probability measure νx on Rm for a.e. x ∈ Ω, such that for almost each ϕ ∈ C(Rm) we have

ϕ(zk) ⇀
∗ ϕ weakly in L∞(Ω; Rm),

where ϕ(x) = 〈νx, ϕ〉 =
∫

Rm ϕ(λ)dνx(λ) for a.e. x ∈ Ω.

We call {νx}x∈Ω the family of Young measures associated with the subsequence {zk}k≥1.
The fundamental theorem on Young measure can be stated in the following lemma:

Lemma 2.3. [5] Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded) and zj : Ω → Rm, j = 1, .., be a sequence
of Lebesgue measurable functions. Then there exists a subsequence zk and a family {νx}x∈Ω of non-negative Radon measures
on Rm, such that

(i) ‖νx‖M(Rm) :=
∫

Rm dνx ≤ 1 for almost x ∈ Ω.
(ii) ϕ(zk) ⇀∗ ϕ weakly* in L∞(Ω) for all ϕ ∈ C0(R

m), where ϕ(x) = 〈νx, ϕ〉 and C0(R
m) = {ϕ ∈ C(Rm) :

lim
|z|→∞

|ϕ(z)| = 0}.

(iii) If for all R > 0
lim

L→∞
sup

k

∣∣{x ∈ Ω ∩ BR(0) : |zk(x)| ≥ L}
∣∣ = 0, (2.2)

then ‖νx‖ = 1 for almost every x ∈ Ω, and for all measurable Ω′ ⊂ Ω there holds ϕ(zk) ⇀ ϕ = 〈νx, ϕ〉 weakly
in L1(Ω′) for continuous function ϕ provided the sequence ϕ(zk) is weakly precompact in L1(Ω′).

3. Galerkin approximation and priori estimates

Let define T : W1,p
0 (Ω; Rm)→W−1,p′(Ω; Rm) in the following way

〈T(u), ϕ〉 =
∫

Ω
φ
(

Du−Θ(u)
)

: Dϕdx− 〈 f , ϕ〉.

Our problem (1.1)-(1.2) is then equivalent to find u ∈W1,p
0 (Ω; Rm) such that 〈T(u), ϕ〉 = 0 for all ϕ ∈W1,p

0 (Ω; Rm).

Lemma 3.1. We have the following properties:

(i) T : W1,p
0 (Ω; Rm)→W−1,p′(Ω; Rm) is linear, well defined and bounded.

(ii) The restriction of T to a finite linear subspace of W1,p
0 (Ω; Rm) is continuous.

(iii) T is coercive.

Proof. (i) T is trivially linear. For arbitrary u ∈ W1,p
0 (Ω; Rm), by the Hölder’s inequality, Poincaré’s inequality

and the Eq. (1.2), we have∣∣〈T(u), ϕ〉
∣∣ = ∣∣∣ ∫

Ω
φ(Du−Θ(u)) : Dϕdx− 〈 f , ϕ〉

∣∣∣
≤
∫

Ω
|Du−Θ(u)|p−1|Dϕ|dx + ‖ f ‖−1,p′‖ϕ‖1,p

≤
( ∫

Ω
|Du−Θ(u)|pdx

) 1
p′ ‖Dϕ‖p + ‖ f ‖−1,p′‖ϕ‖1,p

≤ 2
(p−1)2

p
(
‖Du‖p

p + ‖Θ(u)‖p
p

) p−1
p ‖Dϕ‖p + ‖ f ‖−1,p′‖ϕ‖1,p

≤ c′‖ϕ‖1,p

for some positive constant c′. In the above inequality we have used

|a + b|p ≤ 2p−1(|a|p + |b|p) (p > 1). (3.1)
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It follows that T is well defined and bounded.
(ii) Let V be a subspace of W1,p

0 (Ω; Rm) with dim V = r and (ei)
r
i=1 a basis of V. Let (uk = ai

kei) be a sequence
in V which converges to u = aiei in V (with conventional summation). Then uk → u and Duk → Du almost
everywhere for a subsequence still denoted by {uk}. On the other hand, ‖uk‖p and ‖Duk‖p are bounded by a
constant C. Indeed, since uk → u strongly in V,∫

Ω
|uk − u|pdx → 0 and

∫
Ω
|Duk − Du|pdx → 0,

then there exists a subsequence of {uk} still denoted by {uk} and g1, g2 ∈ L1(Ω) such that |uk − u|p ≤ g1 and
|Duk − Du|p ≤ g2. According to (3.1), it follows that

|uk|p = |uk − u + u|p ≤ 2p−1(|uk − u|p + |u|p
)

≤ 2p−1(g1 + |u|).
Similarly

|Duk|p ≤ 2p−1(g2 + |Du|p).
By the continuity of the function Θ, it follows that

φ(Duk −Θ(uk)) : Dϕ→ φ(Du−Θ(u)) : Dϕ almost everywhere.

Let Ω′ ⊂ Ω be a measurable subset and ϕ ∈W1,p
0 (Ω; Rm). As in the proof of the property (i), we obtain∫

Ω′
|φ(Duk −Θ(uk)) : Dϕ|dx

≤ 2
(p−1)2

p
(
‖Duk‖

p
p︸ ︷︷ ︸

≤C

+ cp‖uk‖
p
p︸ ︷︷ ︸

≤C

) p−1
p
( ∫

Ω′
|Dϕ|pdx

) 1
p
.

Since
∫

Ω′ |Dϕ|pdx is arbitrary small if the measure of Ω′ is chosen small enough, then
(
φ(Duk −Θ(uk)) : Dϕ

)
is

equiintegrable. Applying the Vitali Theorem, it follows that T is continuous.
(iii) We have

〈T(u), u〉 =
∫

Ω
|Du−Θ(u)|p−2(Du−Θ(u)) : Dudx− 〈 f , u〉. (3.2)

By Lemma 2.1, we have

|F|p−2F : (F− G) ≥ 1
p
|F|p − 1

p
|G|p,

then by taking F = Du−Θ(u) and G = −Θ(u), (F− G = Du), we obtain

|Du−Θ(u)|p−2(Du−Θ(u)) : Du

= |Du−Θ(u)|p−2(Du−Θ(u)) : (Du−Θ(u) + Θ(u))

≥ 1
p
|Du−Θ(u)|p − 1

p
|Θ(u)|p.

By vertue of (3.2), we deduce that

〈T(u), u〉 ≥ 1
p

∫
Ω
|Du−Θ(u)|pdx− 1

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p.

We have
1

2p−1 |Du|p =
1

2p−1 |Du−Θ(u) + Θ(u)|p

≤ 1
2p−1

[
2p−1(|Du−Θ(u)|p + |Θ(u)|p

)]
= |Du−Θ(u)|p + |Θ(u)|p
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implies that

〈T(u), u〉 ≥ 1
p

∫
Ω

( 1
2p−1 |Du|p − |Θ(u)|p

)
dx− 1

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p

≥ 1
p2p−1

∫
Ω
|Du|pdx− 2

p

∫
Ω
|Θ(u)|pdx− ‖ f ‖−1,p′‖u‖1,p

≥ 1
p2p−1

∫
Ω
|Du|pdx− 1

p2p

∫
Ω
|Du|pdx− ‖ f ‖−1,p′‖u‖1,p

=
1

p2p

∫
Ω
|Du|pdx− ‖ f ‖−1,p′‖u‖1,p.

Consequently, T is coercive.

To prove Theorem 1.1, we will apply a Galerkin schema. Let V1 ⊂ V2 ⊂ ... ⊂ W1,p
0 (Ω; Rm) be a sequence of

finite dimensional subspaces with the property that ∪
k≥1

Vk is dense in W1,p
0 (Ω; Rm). Note that the existence of

(Vk) is guaranteed by the separability of W1,p
0 (Ω; Rm).

Now, we can construct the approximating solutions:

Lemma 3.2. (i) For all k ∈N there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk. (3.3)

(ii) There exists a constant R > 0 such that

‖uk‖1,p ≤ R for all k ∈N. (3.4)

Proof. (i) Let fix k and assume that dim Vk = r. For simplicity, we write ∑
1≤i≤r

aiei = aiei where (ei)
r
i=1 is a basis of

Vk. Define the map

S : Rr −→ Rr

(a1, .., ar) −→
(
〈T(aiei), ej〉

)
j=1,..,r

.

Remark that S is continuous by Lemma 3.1(ii). Let a ∈ Rr and u = aiei ∈ Vk, then ‖a‖Rr → ∞ is equivalent to
‖u‖1,p → ∞ and

S(a).a = 〈T(u), u〉.

Hence, by Lemma 3.1(iii), we have

S(a).a→ ∞ as ‖a‖Rr → ∞.

Thus, there exists R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have S(a).a > 0. According to the usual topological
arguments [13, Proposition 2.8], S(x) = 0 has a solution x ∈ BR(0). Hence, for all k there exists uk ∈ Vk such that

〈T(uk), ϕ〉 = 0 for all ϕ ∈ Vk.

(ii) Since 〈T(u), u〉 → ∞ as ‖u‖1,p → ∞, it follows that there exists R > 0 with the property, that 〈T(u), u〉 >
1 whenever ‖u‖1,p > R. Consequently, for the sequence of Galerkin approximations uk ∈ Vk which satisfy
〈T(uk), uk〉 = 0 by (3.3), we have the uniform bound

‖uk‖1,p ≤ R for all k ∈N.
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4. Passage to the limit

This section is devoted first to identify weak limits of gradient sequences by means of the Young measures
and then we pass to the limit in the approximating equations. The sequence (or at least a subsequence) of the
gradients Duk generates a Young measure νx. Now, we collect some facts about the Young measure ν = {νx}x in
the following lemma:

Lemma 4.1. Let (uk) the sequence defined in Lemma 3.2. Then the Young measure νx generated by Duk in Lp(Ω; Mm×n)
has the following properties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω.
(ii) The weak L1-limit of Duk is given by 〈νx, id〉 =

∫
Mm×n λdνx(λ).

(iii) νx satisfies 〈νx, id〉 = Du(x) for almost every x ∈ Ω.

Proof. (i) Let νx the Young measure generated by Duk (see Lemma 2.2). Since (uk) is bounded in W1,p
0 (Ω; Rm) by

(3.4), then there exists a constant C ≥ 0 such that for any R > 0,

C ≥
∫

Ω
|Duk|pdx ≥

∫
{x∈Ω∩BR(0): |Duk |≥L}

|Duk|pdx

≥ Lp∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L}
∣∣.

Hence
sup
k∈N

∣∣{x ∈ Ω ∩ BR(0) : |Duk| ≥ L}
∣∣ ≤ C

Lp → 0 as L→ ∞.

According to Lemma 2.2(iii), it follows that ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω.
(ii) Since Lp(Ω; Mm×n) is reflexive (p > 1 and Mm×n ∼= Rmn) and in view of (3.4), we deduce the existence

of a subsequence (still denoted by Duk) weakly convergent in Lp(Ω; Mm×n). Moreover, weakly convergent in
L1(Ω; Mm×n). By taking ϕ as the identity mapping I in Lemma 2.2(iii), we have

Duk ⇀ 〈νx, id〉 =
∫

Mm×n
λdνx(λ) weakly in L1(Ω; Mm×n).

(iii) By the equation (3.4), a subsequence of {uk} converges weakly in W1,p
0 (Ω; Rm) to an element denoted by u.

Thus uk → u in Lp(Ω; Rm) and Duk ⇀ Du in Lp(Ω; Mm×n) (for a subsequence). Owing to (ii), the uniquenesses
of the limit implies that

〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

Now, we have all ingredients to pass to the limit in the approximating equations and to prove Theorem 1.1.
Let (uk) be the sequence constructed in Lemma 3.2.

Proof of Theorem 1.1. Let start by proving that uk → u in measure. By (3.4), we have for a subsequence uk → u in
Lp(Ω; Rm). Let Ek,ε = {x : |uk(x)− u(x)| ≥ ε}, then∫

Ω
|uk(x)− u(x)|pdx ≥

∫
Ek,ε

|uk(x)− u(x)|pdx ≥ εp|Ek,ε|,

which implies

|Ek,ε| ≤
1
εp

∫
Ω
|uk(x)− u(x)|pdx → 0 as k→ ∞.

Therefore, uk → u in measure for k → ∞, and we may infer that, after extraction of a suitable subsequence, if
necessary,

uk → u almost everywhere for k→ ∞.
According to a weak limit defined in Lemma 4.1 and the continuity of Θ, we can write

Duk −Θ(uk) ⇀
∫

Mm×n
(λ−Θ(u))dνx(λ)



GENERALIZED P-LAPLACIAN SYSTEMS VIA YOUNG MEASURES 83

=
∫

Mm×n
λdνx(λ)−Θ(u)

∫
Mm×n

dνx(λ)︸ ︷︷ ︸
:=1

=Du−Θ(u)

weakly in L1(Ω), since (Duk −Θ(uk)) is equiintegrable by (1.2). Therefore

|Duk −Θ(uk)|p−2(Duk −Θ(uk)) ⇀ |Du−Θ(u)|p−2(Du−Θ(u))

weakly in L1(Ω). Since Lp(Ω) is reflexive and φ(Duk − Θ(uk)) is bounded (by (3.1)), the sequence {φ(Duk −
Θ(uk))} converges in Lp′(Ω). Hence its weak Lp′ -limit is also φ(Du−Θ(u)).
We may infer that

lim
k→∞

∫
Ω

φ(Duk −Θ(uk)) : Dϕ(x)dx =
∫

Ω
φ(Du−Θ(u)) : Dϕ(x)dx ∀ϕ ∈ ∪

k≥1
Vk.

For any v ∈W1,p
0 (Ω; Rm), since ∪

k≥1
Vk is dense in W1,p

0 (Ω; Rm), there is a sequence {vk} ⊂ ∪
k≥1

Vk such that vk → v

in W1,p
0 (Ω; Rm) as k→ ∞. Since∫

Ω

(
φ(Duk −Θ(uk)) : Dv− φ(Du−Θ(u)) : Dv

)
dx → 0 as k→ ∞,

we have

〈T(uk), vk〉 − 〈T(u), v〉

=
∫

Ω

(
φ(Duk −Θ(uk)) : Dvk − φ(Du−Θ(u)) : Dv

)
dx− 〈 f , vk − v〉

=
∫

Ω

(
φ(Duk −Θ(uk)) : (Dvk − Dv) +

(
φ(Duk −Θ(uk))− φ(Du−Θ(u))

)
: Dv

)
dx

− 〈 f , vk − v〉.
The right hand side of the above equation tends to 0 as k → ∞. By vertue of Lemma 3.2(i), it follows that
〈T(u), v〉 = 0 for all v ∈W1,p

0 (Ω; Rm).
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