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Obstacle parabolic equations in non-reflexive Musielak-Orlicz
spaces
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Abstract. We prove existence of entropy solutions to general class of unilateral nonlinear parabolic equa-
tion in inhomogeneous Musielak-Orlicz spaces avoiding ceorcivity restrictions on the second lower order
term. Namely, we consider{

u ≥ ψ in QT ,
∂b(x,u)

∂t − div(a(x, t, u,∇u)) = f + div(g(x, t, u)) ∈ L1(QT).
(0.1)

The growths of the monotone vector field a(x, t, u,∇u) and the non-coercive vector field g(x, t, u) are con-
trolled by a generalized nonhomogeneous N- function M (see (3.3)-(3.6)). The approach does not require
any particular type of growth of M (neither ∆2 nor ∇2). The proof is based on penalization method.
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1. Introduction

Generalized Orlicz-spaces LM(.) have been studied since the 1940’s. A major synthesis of functional analysis in
these spaces is given in the 1983-monograph of Musielak [16], hence the alternative name Musielak-Orlicz spaces.
These spaces are similar to Orlicz spaces, but defined by a more general function M(x, t) which may vary with
the location in space.
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Mahrez, B.P 1796 Atlas Fés. Morocco
a e-mail: aberqi ahmed@yahoo.fr .

189



190 A. ABERQI, J. BENNOUNA AND M. ELMASSOUDI

Let Ω be a bounded open set of IRN (N ≥ 2), T is a positive real number and QT = Ω× (0, T). Consider the
following nonlinear Dirichlet equation:

u ≥ ψ in QT ,
∂b(x,u)

∂t + A(u)− div(g(x, t, u)) = f in QT ,
u(x, t) = 0 on ∂Ω× (0, T),
b(x, u)(t = 0) = b(x, u0) in Ω,

(1.1)

where A(u) = −div(a(x, t, u,∇u)) is a Leary-Lions operator defined on the inhomogeneous Musielak-Orlicz-
Sobolev space W1,x

0 LM(QT), M is a Musielak-Orlicz function related to the growths of the Carathéodory functions
a(x, t, u,∇u) and g(x, t, u) (see assumptions (3.3)-(3.6)), b : Ω× IR → IR is a Carathéodory function such that for
every x ∈ Ω, b(x, .) is a strictly increasing C1(IR)-function, the data f and b(., u0) in L1(QT) and L1(Ω) respectively
and u0 ≥ ψ with ψ is a measurable function with values in IR.
The parabolic problems have invaded several fields as well in mathematics, physics as in the economy. Among
the first equations appears the transport equation where b(x, u) = u and g = 0 and the solution is a fairly regular
function. Since these problems have evolved over the last decades by adding other hypotheses and changing the
space of functions solutions as needed. Several works dealing with this type of problem (1.1) in Classical Sobolev
spaces, in orlicz spaces, lastly in Sobolev spaces with variable exponents and rarely in Musielak-Orlicz spaces.
Starting with the paper [8] where g = 0, the existence results have been proved in the framework of Classical
Sobolev spaces in ([5], [7], [15]) where g(x, t, u) = g(u) continuous function on u in the Orlicz spaces. For the
lower order g 6= 0 depending on x, t and u and without coercivity condition, the problem (1.1) was treated firstly
in [14] and recently in ([1]), [2], [9]) using the framework of renormalized solutions.
In Musielak spaces Gwiazda et al. in [11], have been proved the renormalized solution where the conjugate of
Musielak-Orlicz function satisfies the ∆2-condition and in [12] where b(x, u) = u and g = 0.
The aim of this paper is to generalize [1, 11, 12] and reducing the hypotheses either for the lower nonlinear
term g and the framework, i.e. the inhomogeneous space W1,xLM(QT) without 42-condition on M and M,
which introduces some complexity understanding if the dual pairing. The difficulties that arise in problem
(1.1) are due to the control of the term div(g(x, t, u)) which depend on x, t and u, lose of coercivity condition
and the functional setting in these works involve the Musielak-Orlicz spaces which fail to be reflexive (no more
approximation properties of spaces via Mazur’s Lemma and Stokes formula) and any regularity on the obstacle.
An example of equations to which the present result can be applied

u ≥ ψ in QT ,
∂u
∂t
− ∆M(u) + uM(x,∇u) = f + c(x, t)M−1

x M(x,
α0

δ
|u|) in QT ,

u(x, t) = 0 on ∂Ω× (0, T),

where −∆M(u) = −div(
m(x, |∇u|)
|∇u| .∇u), m is the derivative of M with respect to t and ψ is an admissible obstacle

function.
Our approach is to investigate the relationship between the obstacle problem (1.1) and some penalized sequence
of approximate Equation (4.7). We study the possibility to find a solution of (1.1) (See Theorem 4.1) as limit of a
subsequence un of solutions of (4.7).
This paper is organized as follows. In section 2, we recall some definitions, properties and technical Lemmas
about Musielak-Orlicz-Sobolev spaces. The section 3 is devoted to specify the assumptions on b, g, f , u0 and
giving the definition of a entropy solution of (1.1) and statement of main results. In section 4, we give the proof
of the theorem (4.1).

2. Inhomogeous Musielak-Orlicz space- Notation and properties

Let Ω be a bounded open subset in RN (N ≥ 2) and let M be a real-valued function defined in Ω×R+ and
satisfying the conditions:
(M1): M(x, .) is an N-function for all x ∈ Ω,
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(M2) : M(., t) is a measurable function for all t ≥ 0.
A function M which satisfies the conditions (M1) and (M2) is called a Musielak-Orlicz function.
Let Mx(t) = M(x, t), we associate its non-negative reciprocal function M−1

x , with respect to t, that is M−1
x (M(x, t)) =

M(x, M−1
x (t)) = t.

Let M and P be two Musielak-Orlicz functions, we say that P grows essentially less rapidly than M at 0 (resp.

near infinity) and we write P ≺≺ M, if for every positive constant c, we have lim
t→0

(
sup
x∈Ω

P(x, ct)
M(x, t)

)
= 0 (resp.

lim
t→∞

(
sup
x∈Ω

P(x, ct)
M(x, t)

)
= 0

)
.

Proposition 2.1. (See[10]) Let P ≺≺ M near infinity and for all t > 0, supx∈Ω P(x, t) < ∞, then for all ε > 0, there
exists Cε > 0 such that

P(x, t) ≤ M(x, εt) + Cε, ∀t > 0, for a.e. x ∈ Ω. (2.1)

The Musielak-Orlicz function M(x, t) is said to satisfy the ∆2-condition if, there exists k > 0 and a nonnegative
function h(.) ∈ L1(Ω), such that

M(x, 2t) ≤ M(x, t) + h(x) a.e. in Ω.
for large values of t, or for all values of t.
The Musielak-Orlicz space LM(Ω) is define as

LM(Ω) = {u : Ω→ R mesurable : $M,Ω(
u
λ
) < ∞, for some λ > 0}.

where $M,Ω(u) =
∫

Ω
M(x, |u(x)|), dx, equipped with the Luxemburg norm

‖u‖M = inf
{

λ > 0 :
∫

Ω
M(x,

|u(x)|
λ

)dx ≤ 1
}

.

Denote M(x, s) = supt≥0(st−M(x, t)) the conjugate Musielak-Orlicz function of M.

We define EM(Ω) as the subset of LM(Ω) of all measurable function u : Ω 7→ R such that
∫

Ω
M(x,

|u(x)|
λ

) dx < ∞

for all λ > 0. It is a separable space and (EM(Ω))∗ = LM(Ω).
We define the Musielak-Orlicz-Sobolev space as

W1LM(Ω) = {u ∈ LM(Ω) : Dαu ∈ LM(Ω), ∀|α| ≤ 1},
endowed with the norm

‖u‖1
M,Ω = inf{λ > 0 : ∑

|α|≤1
$M,Ω(

Dαu
λ

) ≤ 1}.

Lemma 2.1. [4](Approximation theorem) Let Ω be a bounded Lipschitz domain in RN and let M and M be two comple-
mentary Musielak-Orlicz functions which satisfy the following conditions:

(1) There exists a constant c > 0 such that infx∈Ω M(x, 1) > c,
(2) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2 , we have

M(x, t)
M(y, t)

≤ |t|

(
A

log( 1
|x−y| )

)
for all t ≥ 1,

(3)
∫

K
M(x, λ)dx < ∞, ∀λ > 0 and for every compact K ⊂ Ω,

(4) There exists a constant C > 0 such that M(x, 1) ≤ C a.e. in Ω.

Under this assumptions D(Ω) is dense in LM(Ω) with respect to the modular topology, D(Ω) is dense in
W1

0 LM(Ω) for the modular convergence and D(Ω) is dense in W1LM(Ω) for the modular convergence.

Example 2.1. We give some example for a Musielak-Orlicz functions of approximation theorem
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• M(x, t) = |t|p(x) with p : Ω→ [1, ∞) a measurable function with Log-Hölder continuity

M(x, t)
M(x, t)

= |t|p(x)−p(y) ≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1.

• The next Musielak-Orlicz function satisfying also the 42-condition
M(x, t) = α(x)(exp(|t|)− 1 + |t|), 0 < α(x) ∈ L∞(Ω).

Lemma 2.2. [3](Modular Poincaré inequality) Under the assumptions of Lemma 2.1, and by assuming that M(x, .) de-
creases with respect to one of coordinate of x, there exists a constant δ > 0 which depends only on Ω such that∫

QT

M(x, |u|)dxdt ≤
∫

QT

M(x, δ|∇u|)dxdt. (2.2)

Inhomogeneous Musielak-Orlicz-Sobolev spaces :
Let M be an Musielak-Orlicz function. For each α ∈ NN , denote by ∇α

x the distributional derivative on QT of
order α with respect to the variable x ∈ RN . The inhomogeneous Musielak-Orlicz-Sobolev spaces are defined as
follows,

W1,xLM(QT) = {u ∈ LM(QT) : ∇α
xu ∈ LM(QT), ∀α ∈NN , |α| ≤ 1},

W1,xEM(QT) = {u ∈ EM(QT) : ∇α
xu ∈ EM(QT), ∀α ∈NN , |α| ≤ 1}.

The last space is a subspace of the first one and both are Banach spaces under the norm

‖u‖ = ∑
|α|≤1
‖∇α

xu‖M,QT .

The space W1,x
0 EM(QT) is defined as the (norm) closure in W1,xEM(QT) of D(QT). We can easily show as in

[6], that when Ω has the segment property, then each element u of the closure of D(QT) with respect of the
weak* topology σ(ΠLM, ΠEM) is a limit, in W1,x

0 EM(QT), of some subsequence in D(QT) for the modular con-

vergence. This implies that D(QT)
σ(ΠLM ,ΠEM)

= D(QT)
σ(ΠLM ,ΠLM)

. This space will be denoted by W1,x
0 LM(QT) .

Furthermore, W1,x
0 EM(QT) = W1,x

0 LM(QT) ∩ΠEM, and the dual space of W1,x
0 EM(QT) will be denoted by

W−1,xLM(QT) =

{
f = ∑

|α|≤1
∇α

x fα : fα ∈ LM(QT)

}
.

This space will be equipped with the usual quotient norm ‖ f ‖ = inf ∑|α|≤1 ‖ fα‖M,QT
.

Lemma 2.3. ([10]) Let a < b ∈ R and Ω be a bounded open subset of RN with the segment property, then
{u ∈W1,x

0 LM(Ω× (a, b)) ∩ L1(Ω× (a, b)) : ∂u
∂t ∈W−1,xLM(Ω× (a, b)) + L1(Ω× (a, b))} ⊂ C([a, b], L1(Ω)).

Tk, k > 0, denotes the Truncation function at level k defined on IR by Tk(r) = max(−k, min(k, r)).

3. Formulation of the problem and main results

Let Ω be a bounded Lipschitz domain in IRN (N ≥ 2) and let M and P be two Musielak-Orlicz functions such
that M and its complementary M satisfies conditions of Lemma (2.2) and P ≺≺ M.

b : Ω× IR→ IR is a Carathéodory function such that for every x ∈ Ω, (3.1)

b(x, .) is a strictly increasing C1(IR)-function and b ∈ L∞(Ω× IR) with b(x, 0) = 0.
There exists a constant λ > 0 and functions A ∈ L∞(Ω) and B ∈ LM(Ω) such that

λ ≤ ∂b(x, s)
∂s

≤ A(x),
∣∣∣∇x

(∂b(x, s)
∂s

)∣∣∣ ≤ B(x) a.e. x ∈ Ω , ∀ s ∈ IR. (3.2)

a : QT × IR× IRN → IRN is Carathéodory function such that for a.e. x ∈ Ω and for all s ∈ IR, ξ, ξ∗ ∈ IRN , ξ 6= ξ∗

and there exists a constant ν > 0,

|a(x, t, s, ξ)| ≤ ν(a0(x, t) + M−1
x P(x, |s|)) with a0 ∈ EM(QT), (3.3)
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(a(x, t, s, ξ)− a(x, t, s, ξ∗))(ξ − ξ∗) > 0, (3.4)
a(x, t, s, ξ).ξ ≥ αM(x, |ξ|). (3.5)

g : QT × IR× IRN → IRN is a Carathéodory function such that

|g(x, t, s)| ≤ q(x, t) + c(x, t)M−1
x M(x,

α0

δ
|s|), (3.6)

where 0 < α0 < 1, ‖c(x, t)‖L∞(QT)
< min(

α

α0 + 1
;

λα

(2α0 + 1)‖A‖L∞ + α0
),

q : QT → IR+ is positive function which belong to EM(QT) .

f ∈ L1(QT), (3.7)

u0 ∈ L1(Ω) such that b(x, u0) ∈ L1(Ω). (3.8)
Let ψ a measurable function with values in IR such that

ψ ∈W1
0 EM(QT) ∩ L∞(QT),

∂ψ

∂t
∈ L1(QT) such that u0 ≥ ψ, (3.9)

and let Kψ =
{

u ∈W1,x
0 LM(QT) : u ≥ ψ a.e. in QT

}
.

Note that <,> means for either the pairing between W1,x
0 LM(QT) ∩ L∞(QT) and W−1,xLM(QT) + L1(QT) or

between W1,x
0 LM(QT) and W−1,xLM(QT).

Example 3.1. Our framework admits the following examples
b(x, u) = b0(x)u, where λ ≤ b0(x) ≤ A(x), |∇x(b0(x))| ≤ B(x) and b0 ∈ C1(Ω),

A(x, t, u,∇u) = a0(x, t)|∇u|p(x)−2∇u + |u|p(x), g(x, t, u) = c(x, t)| α0
δ u)|

p(x)
p′(x) , where 1

p(x) +
1

p′(x) = 1 and the Musielak

function is M(x, t) = |t|p(x).

4. Definition of entropy solutions and statement of main results

Definition 4.1. A measurable function u defined on QT is a entropy solution of problem (1.1), if it satisfies the following
conditions:

b(x, u) ∈ L∞(0, T; L1(Ω)), b(x, u)(t = 0) = b(x, u0) in Ω,

Tk(u) ∈W1,x
0 LM(QT), ∀k > 0, ∀t ∈]0, T],

∫ T

0

〈∂v
∂s

;
∫ u

0

∂b(x, z)
∂s

T′k(z− v)dz
〉
ds +

∫
Ω

∫ u0

0

∂b(x, s)
∂s

Tk(s− v(0))dsdx

+
∫

QT

a(x, s, u,∇u)∇Tk(u− v)dxds +
∫

QT

g(x, s, u)∇Tk(u− v)dxds

≤
∫

QT

f Tk(u− v)dxds, ∀k > 0, ∀v ∈ Kψ ∩ L∞(QT) with v(T) = 0,

such that ∂v
∂t ∈ LM(0, T; W−1LM(Ω)).

(4.1)

Theorem 4.1. Assume that (3.1)-(3.9) hold true. Then there exists at least one entropy solution u of the problem (1.1) in
the sense of the definition (4.1).

Proof of theorem 4.1 Truncated problem .
For each n > 0, we define the following approximations

bn(x, s) = b(x, Tn(s)), ∀ s ∈ IR, (4.2)

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e. (x, t) ∈ QT , ∀ s ∈ IR, ∀ ξ ∈ IRN , (4.3)
gn(x, t, s) = g(x, t, Tn(s)) a.e. (x, t) ∈ QT , ∀ s ∈ IR, (4.4)

{ fn}n ∈ L1(QT) be a sequence of smooth functions such that

fn → f strongly in L1(QT), (4.5)
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and
u0n ∈ C∞

0 (Ω) such that bn(x, u0n)→ b(x, u0) strongly in L1(Ω). (4.6)
Let us now consider the penalized approximate equations:

∂bn(x, un)

∂t
− div(an(x, t, un,∇un))

−div(gn(x, t, un))− nTn(un − ψ)− = fn in QT ,
un(x, t) = 0 on ∂Ω× (0, T),
bn(x, un)(t = 0) = bn(x, u0n) in Ω.

(4.7)

For any fixed n > 0, let un ∈W1,x
0 LM(QT), using (3.6) we get

|gn(x, t, un)∇un| ≤ M(x,
q(x, t)

ε
) + εM(x, |∇un|)

+ ‖c(., .)‖L∞(QT)
(M(x,

1
ε

M−1
x M(x,

α0

δ
|Tn(un)|) + εM(x, |∇un|)),

then
|gn(x, t, un)∇un| ≤ dn,ε(x, t) + ε(1 + ‖c(., .)‖L∞(QT)

)M(x, |∇un|),
by (3.5)

[an(x, t, un,∇un) + gn(x, t, un)]∇un ≥ [α− ε(1 + ‖c(., .)‖L∞(QT)
)]M(x, |∇un|)− dn,ε(x, t).

Choosing ε such that α− ε
(

1 + ‖c(., .)‖L∞(QT)

)
> α

2 , we obtain

[an(x, t, un,∇un) + gn(x, t, un)]∇un ≥
α

2
M(x, |∇un|)− dn,ε(x, t)

where dn,ε ∈ L1(QT). Then the operator [an(x, t, un,∇un) + gn(x, t, un)] satisfies the conditions of Theorem 1 of
[13] and there exists at last one solution un ∈W1,x

0 LM(QT) of (4.7).

Remark 4.1. The explicit dependence in x and t of the functions a and g will be omitted so that a(x, t, u,∇u) = a(u,∇u)
and g(x, t, u) = g(u) (resp. an and gn).

Proposition 4.1. Let un be a solution of approximate equation (4.7) and there exists a measurable function u such that
Tk(un)→ Tk(u) weakly in W1,xLM(QT), un → u a.e. in QT ,
bn(x, un)→ b(x, u) a.e. in QT and b(x, u) ∈ L∞(QT),
a(Tk(un),∇Tk(un))∇Tk(un) ⇀ a(Tk(u),∇Tk(u))∇Tk(u) weakly in L1(QT),
∇un → ∇u a.e. in QT .

(4.8)

Then u be a solution of problem (4.1).

Proof. Let w ∈ Kψ ∩ L∞(QT) such that ∂w
∂t ∈W−1,x

0 LM(QT), with w(T) = 0.
Pointwise multiplication of the approximation equation (4.7) by Tk(un − w), we get

∫ T

0
<

∂bn(x, un)

∂t
; Tk(un − w) > dt +

∫
QT

an(un,∇un))∇Tk(un − w) dx dt

+
∫

QT

gn(un)∇Tk(un − w) dx dt−
∫

QT

nTn(un − ψ)−Tk(un − w) dx dt

=
∫

QT

fnTk(un − w) dx dt

(4.9)

Passing to the limit as in (4.9) n→ +∞.
Limit of the first term of (4.9), The first term can be written∫ T

0
<

∂bn(x, un)

∂t
; Tk(un − w) > dt =

∫ T

0
<

∂w
∂t

;
∫ un

0

∂bn(x, z)
∂t

T′k(z− w)dz > dt

+
∫

Ω

∫ un(T)

0
<

∂bn(x, t)
∂t

; Tk(t− w(T)) > dtdx−
∫

Ω

∫ u0n

0
<

∂bn(x, t)
∂t

; Tk(t− w(0)) > dtdx



OBSTACLE PARABOLIC EQUATIONS 195

Since w(T) = 0 and
∂b(x, t)

∂t
≥ 0, then,

∫
Ω

∫ un(T)

0

∂bn(x, t)
∂t

Tk(t)dtdx ≥ 0. Since u0n converge to u0 strongly in

L1(Ω), we obtain,

lim
n→+∞

∫
Ω

∫ u0n

0

∂bn(x, t)
∂t

Tk(t−ω(0))dtdx =
∫

Ω

∫ u0

0

∂b(x, t)
∂t

Tk(t−ω(0))dtdx.

On the other hand, we know that Tm(un) converges to Tm(u) weakly in W1,x
0 LM(QT), and

lim
n→+∞

∫ T

0
<

∂w
∂t

;
∫ un

0

∂bn(x, z)
∂t

T′k(z− w)dz > dt

= lim
n→+∞

∫ T

0
<

∂w
∂t

;
∫ Tm(un)

0

∂bn(x, z)
∂t

T′k(z− w)dz > dt

=
∫ T

0
<

∂w
∂t

;
∫ Tm(u)

0

∂b(x, z)
∂t

T′k(z− w)dz > dt

with m = k + ‖ω‖∞. We have ∫ T

0
<

∂w
∂t

;
∫ Tm(u)

0

∂b(x, z)
∂t

T′k(z− w)dz > dt

≤ lim
n→+∞

∫ T

0
<

∂bn(x, un)

∂t
; T′k(un − w) > dt +

∫
Ω

∫ u0

0
<

∂b(x, t)
∂t

; T′k(t− w(0)) > dtdx.

Limit of an(un,∇un)∇Tk(un − w):
We have an(un,∇un)∇Tk(un −w) = a(Tm(un),∇Tm(un))∇Tk(Tm(un)−w) for n > m. By proposition 4.1 and the
pointwise convergence of un to u as n→ +∞, we get an(un,∇un)∇Tk(un −w) ⇀ a(u,∇u)∇Tk(u−w) weakly in
L1(QT).
Limit of gn(un)∇Tk(un − w):
Since gn(un)∇Tk(un − w) = g(Tm(un))∇Tk(Tm(un)− w) a.e. in QT , with m = k + ‖ω‖∞, and the weakly con-
vergence of Tm(un) to Tm(u) as n → +∞, allows us to have gn(un)∇Tk(un − w) ⇀ g(u)∇Tk(u− w) weakly in
L1(QT).
Limit of fnTk(un − w):
Using (4.5) we can easily see that fnTk(un − w)→ f Tk(u− w) in L1(QT).
Since −nTn(un − ψ)−Tk(un − w) ≥ 0 since w ∈ Kψ, then, as a consequence of the above convergence result, we
are in a position to pass to the limit as n→ +∞ in (4.9) to conclude that u satisfies (4.1).
• It remains to show that b(x, u) satisfies the initial condition.
Firstly, remark that, in view of the definition of Bm

n,ξ (see (4.21)), we have Bm
n,ξ(x, un) is bounded in L∞(QT). Sec-

ondly, by (4.9) we show that
∂Bm

n,ξ(x, un)

∂t
is bounded in L1(QT) +W−1,xLM(QT)). As a consequence, Bm

n,ξ(x, un) ∈
C0([0, T]; L1(Ω)) (see Lemma 2.3).
It follows that, Bm

n,ξ(x, un)(t = 0) converges to Bm
ξ (x, u)(t = 0) strongly in L1(Ω). On the other hand, the

smoothness of ξ imply that Bm
n,ξ(x, un)(t = 0) = Bm

n,ξ(x, u0n) converges to Bm
ξ (x, u)(t = 0) strongly in L1(Ω),

we obtain Bm
ξ (x, u)(t = 0) = Bm

ξ (x, u0) a.e. in Ω and for all m > 0, now letting m to +∞, we conclude that
b(x, u)(t = 0) = b(x, u0) a.e. in Ω.

Remark 4.2. We focus our work to show the conditions of the proposition 4.8, then for this we go through 3 steps to arrive
at our result.

Step 1: In this step let us begin by showing

Tk(un)→ Tk(u) weakly in W1,xLM(QT), (4.10)

and
u ≥ ψ. a.e. in QT . (4.11)
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Fix k > 0,
Let a function ωn = bn(x, un)− b(x, ψ) in L1(QT), then

∇Tk
(
ωn
)
=
[∂bn(x, un)

∂s
∇un +

∂b(x, ψ)

∂s
∇ψ
]
χ{|ωn |≤k}

+
(
∇xbn(x, un)−∇xb(x, ψ)

)
χ{|ωn |≤k}, (4.12)

and

|un| ≤
1
λ
|ωn|+ ‖ψ‖L∞(QT)

. (4.13)

Let τ ∈ (0, T) and using Tk(ωn)χ(0,τ) as a test function in problem (4.7), we get∫
Ω

Bk(ωn)(τ)dx +
∫

Qτ

an(x, t, un,∇un)∇Tk(ωn)dxdt

+
∫

Qτ

gn(x, t, un)∇Tk(ωn)dxdt− n
∫

Qτ

Tn(un − ψ)−Tk(ωn)dxdt

≤ k
(
‖ fn‖L1(QT)

+ ‖b(x, u0n)− b(x, ψ(0))‖L1(Ω)

)
, (4.14)

where Bk(r) =
∫ r

0
Tk(s)ds.

For the first right hand side of (4.14):
We know that 1

2 |Tk(s)|2 ≤ 1
2 sTk(s) ≤ Bk(s) ≤ ks, ∀s ∈ IR, then we obtain∫

Ω
Bk
(
ωn
)
dx ≥ 1

2

∫
Ω
|Tk(ωn)|2dx ≥ 0, ∀k > 0. (4.15)

For the second right hand side of (4.14):∫
Qτ

an(un,∇un)∇Tk(ωn) dx dt =
∫

Qτ

an(un,∇un)
∂bn(x, un)

∂s
∇unχ{|ωn |≤k}dxdt

+
∫

Qτ

an(un,∇un)
∂bn(x, un)

∂s
∇ψχ{|ωn |≤k}dxdt

+
∫

Qτ

an(un,∇un)
(
∇xbn(x, un)−∇xb(x, ψ)

)
χ{|ωn |≤k} dx dt.

Using (3.5), we get∫
Qτ

an(un,∇un)
∂bn(x, un)

∂s
∇unχ{|ωn |≤k}dxdt ≥ λα

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt.

And using (3.3), (2.1), Young inequality and Lemma 2.2 for any ε > 0,∫
Qτ

an(un,∇un)
∂bn(x, un)

∂s
∇ψχ{|ωn |≤k}dxdt

≤ υ‖A‖L∞(Ω)[
∫

Qτ

M(x, a0(x, t)) dx dt +
∫

Qτ

M(x, |∇ψ|) dx dt]

+ ευ‖A‖L∞(Ω)

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt + C2.

Using again (3.3), (2.1) and Young inequality, we get∫
Qτ

an(un,∇un)
(
∇xbn(x, un)−∇b(x, ψ)

)
χ{|ωn |≤k}dxdt

≤ ν
[ ∫

QT

M(x, a0(x, t)) dx dt +
∫

QT

M(x, |∇xbn(x, un)−∇xb(x, ψ)|)dxdt
]

+ νε
∫

QT

M(x, |∇un|)χ{|ωn |≤k} dx dt + ν
∫

QT

M(x, |∇xbn(x, un)−∇xb(x, ψ)|) dx dt.
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For the third right hand side of (4.14):
Thanks to (3.6), (2.1), Young inequality and Lemma 2.2, we get

∫
Qτ

gn(un)∇Tk(ωn)dxdt

≤ ‖A‖L∞ [
∫

QT

M(x,
q(x, t)

ε
) dx dt + ε

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt]

+ ‖A‖L∞ [
∫

QT

M(x, q(x, t)) dx dt +
∫

QT

M(x, |∇ψ|) dx dt]

+
∫

QT

M(x, q(x, t)) dx dt +
∫

QT

M(x, |∇xbn(x, un)−∇xb(x, ψ)|) dx dt

+ ‖A‖L∞‖c(x, t)‖L∞(QT)
(α0 + 1)

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt

+ ‖A‖L∞‖c(x, t)‖L∞(QT)
[α0

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt +
∫

QT

M(x, |∇ψ|) dx dt]

+ ‖c(x, t)‖L∞(QT)
[α0

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt

+
∫

QT

M(x, |∇xbn(x, un)−∇xb(x, ψ)|) dx dt].

Finally we obtain

λα
∫

Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt− n
∫

Qτ

Tn(un − ψ)−Tk(ωn)dxdt

≤ υ‖A‖L∞(Ω)[
∫

QT

M(x, a0(x, t)) dx dt +
∫

QT

M(x, |∇ψ|) dx dt]

+ ευ‖A‖L∞(Ω)

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt + C2

+ ν
[ ∫

QT

M(x, a0(x, t)) dx dt +
∫

QT

M(x, |∇xbn(x, un))−∇xb(x, ψ)|)dxdt
]

+ νε
∫

Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt + ν
∫

QT

M(x, |∇xbn(x, un))−∇xb(x, ψ)|)dxdt

+ ‖A‖L∞ [
∫

QT

M(x,
q(x, t)

ε
) dx dt + ε

∫
Qτ

M(x,−|∇un|)χ{|ωn |≤k} dx dt]

+ ‖A‖L∞ [
∫

QT

M(x, q(x, t)) dx dt +
∫

QT

M(x, |∇ψ|) dx dt]

+
∫

QT

M(x, q(x, t)) dx dt +
∫

QT

M(x, |∇xbn(x, un)−∇xb(x, ψ)|)dxdt

+ ‖A‖L∞‖c(x, t)‖L∞(QT)
(α0 + 1)

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt

+ ‖A‖L∞‖c(x, t)‖L∞(QT)
[α0

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k} dx dt +
∫

QT

M(x, |∇ψ|) dx dt]

+ ‖c(x, t)‖L∞(QT)
[α0

∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt

+
∫

Qτ

M(x, |∇xbn(x, un)−∇xb(x, ψ)|)χ{|ωn |≤k} dx dt]

+ k
(
‖ fn‖L1(QT)

+ ‖b(x, u0n)− b(x, ψ(0))‖L1(Ω)

)
,
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Using (3.5), we get,

1
C′

∫
Qτ

M(x,∇Tk(un))χ{|ωn |≤K}dxdt− n
∫

Qτ

Tn(un − ψ)−Tk(ωn)dxdt ≤ kC1 + Cε.

where 1
C′ = {λα− ε[ν‖A‖L∞ + ν + ‖A‖L∞ ]− ‖c(x, t)‖L∞(QT)

[(2α0 + 1)‖A‖L∞ + α0]}.
Choosing ε such that,

ε <
λα− ‖c(x, t)‖L∞(QT)

[(2α0 + 1)‖A‖L∞ + α0]

ν‖A‖L∞ + ν + ‖A‖L∞
,

we deduce ∫
Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt ≤ kC′C1 + C′C2, (4.16)

and

0 < −n
∫

Qτ

Tn(un − ψ)−Tk(ωn)dxdt ≤ kC1 + C2, (4.17)

passing to limit as k→ 0, we get,

0 ≤
∫

Qτ

Tn(un − ψ)−dxdt ≤ C2

n
.

By letting n→ +∞, we obtain
∫

Qt
(u− ψ)− dx dt = 0, then we conclude (4.11).

On the other hand since {|un| ≤ β} ⊂ {|bn(x, un)− b(x, ψ)| ≤ k} for all β > 0
and k = ‖A‖L∞(β + ‖ψ‖L∞) and using (4.16), we have∫

Qτ

M(x, |∇Tβ(un)|)dxdt ≤
∫

Qτ

M(x, |∇un|)χ{|ωn |≤k}dxdt ≤ βC3 + C4,

where C3 = kC′C1 and C4 = C′C2.
Using (2.2), we have

inf
x∈Ω

M(x,
β

δ
)meas{|un| > β} ≤

∫
{|un |>β}

M(x,
|Tβ(un)|

δ
)dxdt

≤
∫

Qτ

M(x, |∇Tβ(un)|) dx dt ≤ βC3 + C4,

then

meas{|un| > β} ≤ βC3 + C4

infx∈Ω M(x, β
δ )

, for all n and for all β.

Assuming that there exists a positive function m such that lim
t→∞

m(t)
t

= +∞

and m(t) ≤ ess inf
x∈Ω

M(x, t), ∀t ≥ 0. Thus, we get lim
β→∞

meas{|un| > β} = 0.

Now we turn to prove the almost every convergence of un , bn(x, un)
and convergence of an(x, t, Tk(un),∇Tk(un)).

Proposition 4.2. Let un be a solution of the approximate problem, then there exsits a measurable function u such that

un → u a.e in QT . (4.18)

bn(x, un)→ b(x, u) a.e in QT and b(x, u) ∈ L∞(0, T, L1(Ω)). (4.19)

an(Tk(un),∇Tk(un)) ⇀ σk in (LM(QT))
N , for σ(ΠLM, ΠEM), (4.20)

for some σk ∈ (LM(QT))
N .
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Proof.
Proof of (4.18) and (4.19): Consider a function non decreasing ξk ∈ C2(IR) such that ξk(s) = s for |s| ≤ k

2 and
ξk(s) = k for |s| ≥ k and multiplying the approximate equation (4.7) by ξ

′
k(un), we get

∂Bk
n,ξ(x, un)

∂t
= div(ξ

′
k(un)an(x, t, un,∇un))− ξ

′′
k (un)an(x, t, un,∇un)∇un

+div(ξ
′
k(un)gn(x, t, un))− ξ

′′
k (un)gn(x, t, un)∇un + fnξ

′
k(un) in D(QT), (4.21)

where Bk
n,ξ(x, r) =

∫ r

0

∂bn(x, s)
∂s

ξ
′
k(s)ds.

As a consequence of (4.16), we deduce that ξ
′
k(un) is bounded in W1,x

0 LM(QT) and
∂Bk

n,ξ (x,un)

∂t is bounded in

W−1,xLM(QT) + L1(QT). Using (3.2) we get ∂ξk(un)
∂t is bounded in W−1,xLM(QT) + L1(QT), then ξk(un) is compact

in L1(QT). We conclude that for each k, the sequence Tk(un) converges almost everywhere in Q, which implies
that the sequence un converges almost everywhere to some measurable function u in QT .
To prove that b(x, u) ∈ L∞(0, T, L1(Ω)), proceeding as in [1], it is easy to show that if we use (4.21) and (4.16),

we deduce
∫

Ω
Bk

n,ξ(x, un)dx ≤ kC4 + C5, for almost any t in (0, T). Using the pointwise convergence of un and

Bk
n,ξ(x, un) and passing to limit as k → +∞ allows to show that |b(x, u)| =

∫ u

0
sg(s)

∂b(x, s)
∂s

ds ≤ C4. Thus

b(x, u) ∈ L∞(0, T, L1(Ω)).
Proof of 4.20 : Using (3.3) and (4.16), we allows us to prove that {an(Tk(un),∇Tk(un))}n is bounded in

(
LM(Ω)

)N

for all k > 0 and we conclude (4.20).

Step 2:
This technical Lemma will help us in the step 3 of the demonstration,

Lemma 4.1. If the subsequence un satisfies (4.7), then

lim
m→+∞

lim sup
n→+∞

∫
{m≤|un |≤m+1}

a(un,∇un)∇undxdt = 0. (4.22)

Proof.
Multiplying the approximating equation (4.7) by the test function
Zm(un) = Tm+1(un)− Tm(un), we get∫

Ω
Bm(x, un(T))dx +

∫
QT

an(un,∇un)∇Zm(un)dx dt +
∫

QT

gn(un)∇Zm(un)dx dt

−n
∫

QT

Tn(un − ψ)−Zm(un)dxdt =
∫

QT

fnZm(un) dx dt +
∫

Ω
Bm(x, u0n)dx, (4.23)

where Bm(x, r) =
∫ r

0
Zm(s)

∂bn(x, s)
∂s

ds.

By (3.6), we have∫
QT

gn(un)∇Zm(un)dx dt ≤
∫
{m≤|un |≤m+1}

M(x,
q(x, t)

ε
)dx dt

+ [‖c‖L∞(α0 + 1) + ε]
∫
{m≤|un |≤m+1}

M(x, |∇un|)dx dt.

Since −n
∫

QT

Tn(un − ψ)−Zm(un)dxdt ≥ 0,
∫

Ω
Bm(x, un(T))dx ≥ 0 and following the same techniques in step 2,

we obtain ∫
QT

M(x, |∇Zm(un)|)dxdt ≤ C(
∫
{m≤|un |≤m+1}

M(x,
q(x, t)

ε
)dx dt +

∫
Ω

Bm(x, u0n)dx

+
∫

QT

fnZm(un)dxdt),
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where C = 1
α−ε−(α0+1)‖c‖L∞

and taking ε such that ε < α− (α0 + 1)‖c‖L∞ .

Passing to limit as n → +∞, since the pointwise convergence of un and the strongly convergence in L1(QT) of
fn and Bm(x, u0n), we get

lim
n→+∞

∫
QT

M(x,∇Zm(un))dxdt ≤ C(
∫
{m≤|u|≤m+1}

M(x,
q(x, t)

ε
)dx dt +

∫
Ω

Bm(x, u0)dx

+
∫

QT

f Zm(u)dxdt)

By Lebesgue’s theorem and passing to limit as m→ +∞, in the all term of the right-hand side, we get

lim
m→+∞

lim
n→+∞

∫
QT

M(x, |∇Zm(un)|)dxdt = 0, (4.24)

On the other hand, we have

lim
m→+∞

lim
n→+∞

|
∫

QT

gn(un)∇Zm(un)dxdt| ≤ lim
m→+∞

lim
n→+∞

∫
QT

M(x, |∇Zm(un)|)dxdt,

+ lim
m→+∞

lim
n→+∞

∫
{m≤|un |≤m+1}

M(x, |gn(un)|)dxdt.

Using the pointwise convergence of un and by Lebesgue’s theorem, in the second term of the right side, we get

lim
n→+∞

∫
{m≤|un |≤m+1}

M(x, |gn(un)|)dxdt =
∫
{m≤|u|≤m+1}

M(x, |g(u)|)dxdt,

and by Lebesgue’s theorem

lim
m→+∞

∫
{m≤|u|≤m+1}

M(x, |g(u)|) dx dt = 0, (4.25)

By (4.24) and (4.25), we have lim
m→+∞

lim
n→+∞

∫
QT

gn(un)∇Zm(un)dxdt = 0, then passing to the limit in (4.23), we get

the (4.22).

Step 3: We will concentrate on the following last two conditions of proposition 4.1.

a(Tk(un),∇Tk(un))∇Tk(un) ⇀ a(Tk(u),∇Tk(u))∇Tk(u) weakly in L1(QT), (4.26)

and
∇un → ∇u a.e. in QT . (4.27)

This step is devoted to introduce for k ≥ 0 fixed a time regularization of the function Tk(b(x, u)− b(x, ψ)) in order
to perform the monotonicity method.
Let ν

µ
0 be a sequence of function in L∞(Ω) ∩W1

0 LM(Ω)) such that ‖νµ
0 ‖L∞(Ω) ≤ k for all µ > 0, and ν

µ
0 converge

to Tk(b(x, u0)− b(x, ψ)) a.e. in Ω and 1
µ‖ν

µ
0 ‖LM(Ω) → 0 as µ→ 0.

Let us consider the unique solution (Tk(b(x, u)− b(x, ψ)))µ ∈ L∞(QT) ∩W1,x
0 LM(QT) of the monotone problem:{

∂(Tk(b(x,u)−b(x,ψ)))µ

∂t + µ((Tk(b(x, u)− b(x, ψ)))µ − Tk(b(x, u)− b(x, ψ))) = 0 in D′(QT)
(Tk(b(x, u)− b(x, ψ)))µ(t = 0) = wµ

0 in Ω.
(4.28)

Remark that
(Tk(b(x, u)− b(x, ψ)))µ converge to Tk(b(x, u)− b(x, ψ)) (4.29)

a.e. in QT , weakly-* in L∞(QT) and in W1,x
0 LM(QT) for the modular convergence as µ→ +∞, and we have

‖(Tk(b(x, u)− b(x, ψ)))µ‖L∞(QT)
≤ max(‖Tk(b(x, u)− b(x, ψ))‖L∞(QT)

, ‖νµ
0 ‖L∞(Ω)) ≤ k.

Let Sm be a sequence of increasing C∞-function such that Sm(r) = r, |r| ≤ m; supp(S′m) ⊂ [−2m, 2m] and
‖S′′m‖L∞(IR) ≤ 3

m for any m ≥ 1.
Denote ε(m, µ, n) the value, such that: lim

m→+∞
lim

µ→+∞
lim

n→+∞
ε(n, µ, m) = 0.
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Lemma 4.2. Let S be a C∞-function such that S(r) = r for |r| ≤ k , and supp(S′) is compact. The subsequence un satisfies
for k ≥ 0

lim inf
µ→+∞

lim
n→+∞

∫ T

0
<

∂b(x, un)

∂t
, S′(b(x, un)− b(x, ψ))Tk(b(x, un)− b(x, ψ))

−(Tk(b(x, u)− b(x, ψ)))µ > dt ≥ 0,

Proof. see Appendix

where < ., . > denotes the duality pairing between L1(QT) + W−1LM(QT) and
L∞(QT) ∩W1LM(QT). We prove the following Lemma which is the critical point in the development of the
monotonicity method.

Lemma 4.3. The subsequence un satisfies for k ≥ 0

lim sup
n→+∞

∫
QT

a(un,∇Tk(un))∇Tk(un)dxdt ≤
∫

QT

σk∇Tk(un)dxdt.

Proof.
We use the sequence (Tk(u))µ of approximation of Tk(u) and plug the test function
S′m(ωn)(Tk(ωn)− (Tk(ωn))µ) for m > 0 and µ > 0, where ωn = b(x, un)− b(x, ψ).
For fixed m ≥ 0, let Wµ

n = Tk(ωn)− (Tk(ω))µ, we obtain:

∫ T

0
<

∂bn(x, un)

∂t
, S′m(ωn)W

µ
n > dt +

∫
QT

an(un,∇un))S′m(ωn)∇Wµ
n dxdt

+
∫

QT

an(un,∇un)S′′m(ωn)∇(ωn)W
µ
n dxdt +

∫
QT

gn(un)S′m(ωn)∇Wµ
n dxdt

+
∫

QT

gn(un)S′′m(ωn)∇(ωn)W
µ
n dxdt−

∫
QT

nTn(un − ψ)−S′m(ωn)W
µ
n dxdt

=
∫

QT

fnS′m(ωn)W
µ
n dxdt

(4.30)

Now we pass to the limit in as n → +∞,µ → +∞ and then m → +∞. In order to perform this task we prove
below the following results for any fixed k ≥ 0 .

lim inf
µ→+∞

lim
n→+∞

∫ T

0
<

∂bn(x, un)

∂t
; S′m(ωn)W

µ
n > dt ≥ 0 for any m ≥ k, (4.31)

lim
µ→+∞

lim
n→+∞

∫
QT

gn(un))S′m(ωn)∇Wµ
n dxdt = 0 for any m ≥ 1, (4.32)

lim
µ→+∞

lim
n→+∞

∫ T

0

∫
QT

gn(un)S′′m(ωn)∇(ωn)W
µ
n dxdt = 0, (4.33)

lim
m→+∞

lim sup
µ→+∞

lim sup
n→+∞

∫
QT

an(un,∇un))S′′m(ωn)∇(ωn)W
µ
n dxdt = 0, (4.34)

lim
µ→+∞

lim
n→+∞

∫
QT

nTn(un − ψ)−S′m(ωn)W
µ
n dxdt = 0, (4.35)

lim
µ→+∞

lim
n→+∞

∫
QT

fnS′m(ωn)W
µ
n dxdt = 0. (4.36)

Proof of (4.31):
The function Sm ∈ L∞(IR) and is increasing. We have m ≥ k, Sm(r) = r for |r| ≤ k , and supp(S′m) is compact. In
view of the definition of Wµ

n , Lemma 4.2 applies with S = Sm for fixed m ≥ k. As a consequence (4.31) holds true.
Proof of (4.32):
Let us recall the main properties of Wµ

n .
For fixed µ > 0, Wµ

n converge to Wµ = Tk(b(x, u)− b(x, ψ))− (Tk(b(x, u)− b(x, ψ)))µ weakly in W1,x
0 LM(QT) as

n→ +∞.
Remark that

‖Wµ
n ‖L∞(QT)

≤ 2k for any n, µ > 0, (4.37)
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then we deduce that
Wµ

n →Wµ a.e. in QT and L∞(QT), (4.38)
weakly-* when n → +∞. One had suppS′m ⊂ [−2m,−m] ∩ [m, 2m] for any fixed m ≥ 1 and n > m + 1, then
gn(un)S′m(ωn)∇Wµ

n = gn(un)S′m(T2m(ωn))∇Wµ
n a.e. in QT since suppS′m ⊂ [−2m, 2m].

On the other hand gn(un)S′m(T2m(ωn))→ g(u)S′m(T2m(b(x, u)− b(x, ψ))) a.e. in QT and
|gn(un))S′m(T2m(ωn))| ≤ 2m[q(x, t) + c(x, t)M−1

x M(x, α0
λ m)] for m ≥ 1.

As Wµ
n converge to Wµ weakly in W1,x

0 LM(QT) as µ→ +∞, we obtain (4.32).
Proof of (4.33):
For any fixed m ≥ 1 and n > 2m

gn(un)S′′m(ωn)∇(ωn)W
µ
n = gn(un)S′′m(T2m(ωn))∇T2m(ωn)W

µ
n , a.e. in QT .

As in the previous step it is possible to pass to the limit for n→ +∞ since by (4.37) and (4.38).

gn(un)S′′m(T2m(ωn))W
µ
n → g(u))S′′m(T2m(b(x, u)− b(x, ψ)))Wµ, a.e. in QT .

Since
|g(u)S′′m(T2m(b(x, u)− b(x, ψ)))Wµ| ≤ 3

m
[c(x, t)M−1

x M(x,
α0

λ
m)] a.e. in QT .

And Wµ converge to 0 in W1,x
0 LM(QT) for the modular convergence, we obtain (4.33).

Proof of (4.34):
In view of the definition of Sm, we have
suppS′m ⊂ [−2m,−m] ∩ [m, 2m] for any fixed m ≥ 1, as a consequence

|
∫

QT

an(un,∇un))S′′m(ωn)∇(ωn)W
µ
n dxdt|

≤ ‖S′′m‖L∞(IR)‖W
µ
n ‖L∞(QT)

∫
m≤|(ωn |≤2m

an(un,∇un))∇(ωn)dxdt

≤ 3‖Wµ
n ‖L∞(QT)

1
m

∫
|(ωn |≤2m

an(un,∇un))∇(ωn) dx dt

≤ 3‖Wµ
n ‖L∞(QT)

1
m

∫
|un |≤s

an(un,∇un)∇undxdt,

with s = 2m
λ + ‖ψ‖L∞(QT)

for any m ≥ 1, any n > 2m and any µ > 0.
By Lemma (4.22) it is possible to establish (4.34).
proof of (4.35): By (4.5), the pointwise convergence of un and Wµ

n and its boundlessness it is possible to pass to
the limit for n→ +∞ for any µ > 0 and any m ≥ 1

lim
n→+∞

∫
QT

fnS′m(ωn)W
µ
n dxdt =

∫
QT

f S′m(b(x, u)− b(x, ψ))Wµdxdt.

Now for fixed m ≥ 1, using that
‖(Tk(u))µ‖L∞(QT)

≤ max(‖Tk(u)‖L∞(QT)
, ‖wµ

0‖L∞(Ω)) ≤ k, ∀µ > 0, ∀k > 0, it is easy to deduce (4.35).
Proof of (4.36): Similar to (4.35).
Finally we adopt the same technics used in [17] to obtain the Lemma 4.4.

Lemma 4.4. The subsequence of un satisfies for any k ≥ 0

lim
n→+∞

∫
QT

(
a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
dxdt = 0, (4.39)

σk = a(Tk(u),∇Tk(u)) a.e. in QT , as n→ +∞ (4.40)

a(Tk(un),∇Tk(un))∇Tk(un) ⇀ a(Tk(u),∇Tk(u))∇Tk(u), weakly in L1(QT). (4.41)

Remark 4.3. Note the (4.39) allows us to deduce that ∇un → ∇u a.e. in QT . This complete the proof of proposition 4.1
and Theorem 4.1.
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Appendix
Proof of Lemma 4.2
Let wn = β(x, un)− β(x, ψ) and w = β(x, u)− β(x, ψ), then∫ T

0
〈∂β(x, un)

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt

=
∫ T

0
〈∂wn

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt

+
∫ T

0
〈∂β(x, ψ)

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt. (.42)

On the first time we use (4.18), (4.19), supp(S′) is compact and tends n to +∞ and we have

lim
n→+∞

∫ T

0
〈∂β(x, ψ)

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt

=
∫ T

0
〈∂β(x, ψ)

∂t
, S′(w)(Tk(w)− (Tk(w))µ)〉dt.

On the second time we use the fact that (Tk(w))µ → Tk(w) for the modular convergence as µ → +∞ in
W1,xLM(QT), then

lim inf
µ→+∞

lim
n→+∞

∫ T

0
〈∂β(x, ψ)

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt = 0 (.43)

On the other hand we write the first term on the right-hand side of (.42) as∫ T

0
〈∂wn

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt =

∫ T

0
〈∂wn

∂t
, S′(wn)Tk(wn)〉dt

−
∫ T

0
〈∂wn

∂t
, S′(wn)(Tk(w))µ〉dt

= In
1 + In,µ

2 .

We denote BS,k(r) =
∫ r

0
S′(σ)Tk(σ)dσ and BS(r) =

∫ r

0
S′(σ)dσ.

Then, for In
1 we can pass to limit as n→ +∞ and we deduce

lim
n→+∞

In
1 = lim

n→+∞

∫
Ω
[BS,k(wn(T))− BS,k(wn(0))]dx

=
∫

Ω
[BS,k(w(T))− BS,k(w(0))]dx. (.44)

By the definition of (Tk(w))µ, the second integral In,µ
2 can be written as

In,µ
2 = −

∫ T

0
〈∂wn

∂t
, S′(wn)(Tk(w))µ〉dt

= −
∫

Ω
[BS(wn(T))(Tk(w))µ(T)dx− BS(wn(0))(Tk(w))µ(0)]dx

+
∫

Ω

∫ T

0
BS(wn)

∂(Tk(w))µ

∂t
dtdx

= −
∫

Ω
[BS(wn(T))(Tk(w))µ(T)dx− BS(wn(0))(Tk(w))µ(0)]dx

+ µ
∫

Ω

∫ T

0
BS(wn)(Tk(w)− (Tk(w))µ)dtdx.

On the same way, we pass to limit as n→ +∞, we obtain

lim
n→+∞

In,µ
2 = −

∫
Ω
[BS(w(T))(Tk(w))µ(T)− BS(w(0))(Tk(w))µ(0)]dx
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+µ
∫

Ω

∫ T

0
BS(w)(Tk(w)− (Tk(w))µ)dtdx. (.45)

Now by the limit (4.29) letting µ→ +∞, we get

lim
µ→+∞

∫
Ω
[BS(w(T))(Tk(w))µ(T)− β(w(0))(Tk(w))µ(0)]dx

=
∫

Ω
[BS(w(T))Tk(w)(T)− β(w(0))Tk(w)(0)]dx. (.46)

The right-hand of (.45) can be written as

µ
∫

Ω

∫ T

0
BS(w)(Tk(w))− (Tk(w))µ))dxdt

= µ
∫

Ω

∫ T

0
(BS(w)− BS(Tk(w))(Tk(w)− (Tk(w))µ)dxdt

+ µ
∫

Ω

∫ T

0
(BS(Tk(w))− BS((Tk(w))µ)(Tk(w)− (Tk(w))µ)dxdt

+ µ
∫

Ω

∫ T

0
BS((Tk(w))µ)(Tk(w)− (Tk(w))µ)dxdt

= Jµ
1 + Jµ

2 + Jµ
3 ,

where

Jµ
1 = µ

∫
Ω

∫ T

0
(BS(w)− BS(Tk(w)))(Tk(w))− (Tk(w))µ)dxdt

= µ
∫
{w>k}

∫ T

0
(BS(w)− BS(k))(k− (Tk(w))µ)dxdt

+µ
∫
{w<−k}

∫ T

0
(BS(w)− BS(−k))(−k− (Tk(w))µ)dxdt,

as BS(z) is non-decreasing for z and −k ≤ Tk(z) ≤ k. It follows that Jµ
1 ≥ 0 and also Jµ

2 ≥ 0.
For the integral Jµ

3 , one has

Jµ
3 = µ

∫
Ω

∫ T

0
BS((Tk(w))µ)(Tk(w)− (Tk(w))µ)dtdx

=
∫

Ω

∫ T

0
BS((Tk(w))µ)

∂Tk(w))µ

∂t
dtdx

=
∫

Ω
[BS((Tk(w))µ)(T)− BS((Tk(w))µ)(0)]dx,

where BS(z) =
∫ z

0
BS(s)ds.

Since (Tk(w))µ → Tk(w) a.e. in QT and |(Tk(w))µ| ≤ k, the Lebesgue’s convergence theorem shows that

lim
µ→+∞

Jµ
3 =

∫
Ω
[BS(x, Tk(w))(T)− BS(x, Tk(w))(0)]dx. (.47)

As a consequence of (.46) and (.47), we obtain

lim
µ→+∞

lim
n→+∞

In,µ
2 ≥

∫
Ω
[BS(x, Tk(w))(T)− BS(x, Tk(w))(0)]dx

+
∫

Ω
[BS(x, Tk(w))(T)− BS(x, Tk(w))(0)]dx. (.48)

Finally, by (.43), (.44), (.47) and (.48) we deduce

lim
µ→+∞

lim
n→+∞

∫ T

0
〈∂β(x, un)

∂t
, S′(wn)(Tk(wn)− (Tk(w))µ)〉dt
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≥
∫

Ω
[BS,k(w(T))− BS,k(w(0)]dx

−
∫

Ω
[BS(w(T))Tk(w)(T)− BS(w(0))Tk(w))(0)]dx

+
∫

Ω
[BS(Tk(w))(T)− BS(Tk(w)(0)]dx, (.49)

and we know that
BS(Tk(z)) = BS(Tk(z))Tk(z)− BS,k(Tk(z))

Indeed

BS(Tk(z)) =
∫ Tk(z)

0
BS(s)ds =

∫ Tk(z)

0

∫ s

0
S′(σ)dσds

= [s
∫ s

0
S′(σ)dσ]

Tk(z)
0 −

∫ Tk(z)

0
rS′(r)dr

= BS(Tk(z))Tk(z)− BS,k(Tk(z)),
then using the definition of truncation Tk(z), one has∫

Ω
[BS,k(x, w(T))− BS,k(x, w(0)]dx−

∫
Ω
[BS(w(T))Tk(w)(T)− BS(w(0))Tk(w))(0)]dx

+
∫

Ω
[BS(Tk(w))(T)− BS(Tk(w))(0)]dx = 0.

This completes the proof.
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