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A few results on some nonlinear parabolic problems in
Orlicz-Sobolev spaces

Hicham Redwane
1,a

Abstract. In this paper, we present our results (see our papers), which concern the existence of the renor-
malized solutions for equations of the type:

∂b(x, u)
∂t

− div
(

a(x, t, u,∇u)
)
− div

(
Φ(x, t, u)

)
= f in Q = Ω× (0, T),

where b(x, ·) is a strictly increasing C1-function for any x ∈ Ω, a(x, t, s, ξ) and Φ(x, t, s) are a Carathéodory
functions. The function f is in L1(Q).
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1. Introduction

Actually, the studies of partial differential equations in modular spaces attract the attention of many researchers
motivated by their applications in different domains, many models coming from various branches of mathemat-
ical physics, such as elastic mechanics, electro-rheological fluid dynamics and image processing, see for instance
[8, 20].

In this paper, we survey some existence results for a class of parabolic problems, we refer to [1, 2, 19] for an
extended treatment. Let Ω be a bounded open subset of RN , N ≥ 2, Q = Ω× (0, T) where T is a positive real

number and M is an Orlicz function. Let A(u) := −div
(

a(x, t, u,∇u)
)

be a so-called Leray-Lions type operator

whose prototype is the p-Laplacian operator a(x, s, ξ) = |ξ|p−2ξ and b : Ω×R → R is a Carathéodory function
such that b(x, ·) is a strictly increasing C1-function for any fixed x ∈ Ω with b(x, 0) = 0 and f ∈ L1(Q).
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Let us consider the following parabolic equation

∂b(x, u)
∂t

+ A(u)− div
(

Φ(x, t, u)
)
= f in Q (1.1)

In the first section, we investigate an existence of renormalized solution for a Cauchy-Dirichlet problem asso-
ciated to (1.1) in the particular case where the lower order term Φ is independent of the spacial variable (x, t).

While in the second part, in the case where the Orlicz function M(t) = tp, the space framework is then the
classical Sobolev space. In this context, we present a study of the unilateral problem associated to equation (1.1),
the function Φ is a nonlinear lower order term satisfying only a growth condition, The aim of this work is to
investigate the relationship between the considered obstacle problem and some penalized sequence of approxi-
mate equation. We study the possibility of finding a solution of our problem as limit of a subsequence uε of the

approximate solutions. The penalized term
1
ε

T1
ε
(uε − ψ)− introduced in the approximate problem plays a crucial

role in the proof of such solution.
Finally, the third part is devoted to an existence result for a nonlinear parabolic systems of two equations like

(1.1) in the case where b and Φ depend only on u, namely, we take

∂bi(ui)

∂t
+ A(ui)− div

(
Φi(ui)

)
+ fi(x, u1, u2) = 0 in Q for i = 1, 2,

we deal with the renormalized solution for the above system in Sobolev spaces where fi is a Carathéodory
function satisfying some growth assumptions.

In what follows, we will use the following real function of a real variable, called the truncation at height k > 0,

Tk(s) = max
(
− k, min(k, s)

)
=

{
s if |s| ≤ k
k

s
|s| if |s| > k.

2. EXISTENCE RESULTS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS IN ORLICZ SPACES

2.1. Basic assumptions and main result. Through this paper assume that for any k > 0, there exists λk > 0, a
function Ak ∈ L∞(Ω) and a function Bk ∈ LM(Ω) such that,

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣∇x

(∂b(x, s)
∂s

)∣∣∣ ≤ Bk(x). (2.1)

Our main goal in this section is to prove an existence of renormalized solutions in the setting of Orlicz spaces to
the following Cauchy-Dirichlet boundary value problem

∂b(x, u)
∂t

− div
(

a(x, t, u,∇u)
)
− div

(
Φ(u)

)
= f in Q

b(x, u)(t = 0) = b(x, u0) in Ω
u = 0 on ∂Ω× (0, T),

(2.2)

where a : Q × R × RN → RN is a Carathéodory function satisfying, for almost every (x, t) ∈ Q and for all
s ∈ R, ξ, η ∈ RN(ξ 6= η) the following conditions

(H1): There exists a function Ck ∈ EM(Q) and some positive constants β1
k β2

k, β3
k, β4

k and an Orlicz function
P ≺≺ M such that

|a(x, t, s, ξ)| ≤ Ck(x, t) + β1
k M−1

(P(β2
k|s|) + β3

k M−1
(M(β4

k|ξ|)).
(H2): The vector a is strictly monotone(

a(x, t, s, ξ)− a(x, t, s, η)
)

.
(

ξ − η
)
> 0.

(H3): a is coercive, there exists a constant α > 0 such that

a(x, t, s, ξ) · ξ ≥ αM(|ξ|).
(H4): For the lower order term, we assume Φ : R→ RN be a continuous function.
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For that concerns the right hand, f ∈ L1(Q) and u0 ∈ L1(Ω),

Lemma 2.1. [19] Under assumptions (H1)-(H3), let (Zn) be a sequence in W1,x
0 LM(Q) such that

Zn ⇀ Z in W1,x
0 LM(Q) for σ(ΠLM(Q), ΠEM(Q)), (2.3)(

a(x, t, Zn,∇Zn)
)

n
is bounded in

(
LM(Q)

)N
, (2.4)

lim
n,s→∞

∫
Q

(
a(x, t, Zn,∇Zn)− a(x, t, Zn,∇Zχs)

)
·
(
∇Zn −∇Zχs

)
dxdt = 0, (2.5)

where χs denote the characteristic function of the set Ωs =
{

x ∈ Ω : |∇Z| ≤ s
}

. Then,

∇Zn → ∇Z a.e. in Q, (2.6)

lim
n→∞

∫
Q

a(x, t, Zn,∇Zn)∇Zn dx =
∫

Q
a(x, t, Z,∇Z)∇Z dxdt, (2.7)

M(|∇Zn|) −→ M(|∇Z|) in L1(Q). (2.8)

Now, we give the definition of a renormalized solution for problem (2.2).

Definition 2.1. A measurable function u defined on Q is said a renormalized solution of problem (2.2) if

Tk(u) ∈W1,x
0 LM(Q) ∀k ≥ 0, and b(x, u) ∈ L∞(0, T, L1(Ω)), (2.9)

lim
m→∞

∫
{m≤|u(x,t)|≤m+1}

a(x, t, u,∇u)∇u dxdt = 0, (2.10)

and if, for every function S (renormalization) in W2,∞(R) with compact support, we have

∂BS(x, u)
∂t

− div (S′(u)a(x, t, u,∇u)) + S′′(u)a(x, t, u,∇u)∇u

− div (S′(u)Φ(x, t, u)) + S′′(u)Φ(x, t, u)∇u = f S′(u) in D′(Q),
(2.11)

BS(x, u)(t = 0) = BS(x, u0) in Ω,

where BS(x, τ) =
∫ τ

0

∂b(x, s)
∂s

S′(s) ds.

Remark 2.1. [19] For every S ∈W2,∞(R) nondecreasing function such that supp(S′) ⊂ [−k, k] and (2.1), we have

λk|S(s1)− S(s2)| ≤ |BS(x, s1)− BS(x, s2)| ≤ ‖Ak‖L∞(Ω)|S(s1)− S(s2)|,
for almost every x ∈ Ω and for every s1, s2 ∈ R.

The following theorem is our main result.

Theorem 2.1. Suppose that the assumptions (H1)− (H4) hold true and f ∈ L1(Q), then there exists at least a renormalized
solution of problem (2.2).

The proof of the above theorem is divided into four steps.
Step 1: Approximate problems. Let fn be a sequence of regular function in C∞

0 (Q) which converges strongly
to f in L1(Q) and such that ‖ fn‖L1 ≤ ‖ f ‖L1 and for each n ∈N∗, put

bn(x, s) = Tn(b(x, s)) +
1
n

s,

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e (x, t) ∈ Q, ∀s ∈ R, ∀ξ ∈ RN ,
Φn is a Lipschitz continuous bounded function from R into RN , such that Φn uniformly converges to Φ on any
compact subset of R as n tends to +∞. Let u0n ∈ C∞

0 (Ω) such that

‖ bn(x, u0n) ‖L1≤‖ b(x, u0) ‖L1 and bn(x, u0n) −→ b(x, u0) in L1(Ω).
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Considering the following approximate problem
∂bn(x, un)

∂t
− div a(x, t, un,∇un)− div Φn(un) = fn in Q

bn(x, un)(t = 0) = bn(x, u0) in Ω
un = 0 on ∂Ω× (0, T).

(2.12)

Thus, from [11], the approximate problem (2.12) has at least one weak solution un ∈W1,x
0 LM(Q)

Step 2: A Priori Estimates.

Proposition 2.1. Suppose that the assumptions (H1) − (H4) hold true and let (un)n be a solution of the approximate
problem (2.12). Then, for all k > 0, there exists a constant C, (not depending on n), such that:

‖ Tk(un) ‖W1,x
0 LM(Q)

≤ Ck, (2.13)

∫
Ω

Bn
k (x, un)(σ) dx ≤ k

(
‖ f ‖L1(Q) + ‖b(x, u0‖L1(Ω)

)
, (2.14)

for almost any σ ∈ (0, T) where Bn
k (x, τ) =

∫ τ

0
Tk(s)

∂bn(x, s)
∂s

ds, and

limk→+∞ lim
n→+∞

meas
{
(x, t) ∈ Q : |un| > k

}
= 0. (2.15)

Proof. Testing the approximate problem (2.12) by Tk(un)χ(0,σ), one has for every σ ∈ (0, T)∫
Ω

(
Bn

k (x, un)(σ)− Bn
k (x, u0n)

)
dx +

∫
Qσ

a(x, t, un,∇un)∇Tk(un) dx dt

+
∫

Qσ

Φn(un)∇Tk(un) dx dt =
∫

Qσ

fnTk(un) dx dt.
(2.16)

The Lipschitz character of Φn, Stokes formula together with the boundary condition make it possible to obtain∫
Qσ

Φn(un)∇Tk(un) dx dt = 0 (2.17)

On the other hand, we have ‖ fn‖L1 ≤ ‖ f ‖L1 , which implies that∫
Q

fnTk(un) dx dt ≤ k‖ f ‖L1 . (2.18)

Concerning the first integral in (2.16), we have by construction of Bn
k (x, un),∫

Ω
Bn

k (x, un)(σ) dx ≥ 0 (2.19)

and

0 ≤
∫

Ω
Bn

k (x, u0n) dx ≤ k
∫

Ω
|bn(x, u0n)| dx ≤ k‖b(x, u0)‖L1(Ω). (2.20)

Thanks to (H3), we deduce ∫
Qσ

M
(
|∇Tk(un)|

)
dx dt ≤ kC. (2.21)

where C = ‖ f ‖L1(Ω) + ‖b(x, u0)‖L1(Ω). To prove (2.14), we combine (2.16), (2.18), (2.19) and (2.20), (2.21). Finally,

we prove (2.15), to this end, since un ∈W1,x
0 LM(Q) there exists λ > 0 and a constant C0 such that∫

Q
M
( |un|

λ

)
dx dt ≤ C0
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By using young’s inequality, we obtain

meas
{
|un| > k

}
≤ 1

k

∫
Q
|Tk(un)| dx dt ≤ 1

k

∫
Q
|un| dx dt

≤ λ

k

( ∫
Q

M
( |un|

λ

)
dx dt +

∫
Q

M(1) dx dt
)

≤ λ

k

(
C0 + M(1)|Q|

)
∀n, ∀k > 0,

−→ 0 as k −→ ∞.

(2.22)

Which implies (2.15).

Proposition 2.2. Let un be a solution of the approximate problem (2.12), then:
(i) un −→ u a.e. in Q,
(ii) bn(x, un) −→ b(x, u) a.e. in Q,
(iii) b(x, u) ∈ L∞(0, T; L1(Ω)).
(iv) {a(x, t, Tk(un),∇Tk(un))}n is bounded in (LM(Q))N ,

(v) lim
m→+∞

lim
n→+∞

∫
{m≤|un |≤m+1}

a(x, t, un,∇un)∇un dx = 0.

Proof. (see [19] for a complete proof)

Step 3: Almost everywhere convergence of the gradients.

Proposition 2.3. Let un be a solution of the approximate problem (2.12). Then, for all k ≥ 0 we have (for a subsequence
still denoted by un): as n→ +∞,
(i) ∇un → ∇u a.e. in Q,
(ii) a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u)) weakly in (LM(Q))N ,
(iii) M(|∇Tk(un)|)→ M(|∇Tk(u)|) strongly in L1(Q).

Proof. (see [19])

Step 4: Passing to the limit. The limit u of the approximate solution un of (2.12) satisfies the renormalization
identity

lim
m→∞

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt = 0. (2.23)

Now, we pass to the limit. Testing the approximate problem (2.12) by S′(un) with r ∈W1,∞(R) having a compact
support such that for k > 0, supp(r) ⊂ [−k, k] we get

∂Bn
r (x, un)

∂t
− div (S′(un)a(x, t, un,∇un)) + S′(un)a(x, t, un,∇un)∇un

− div (S′(un)Φ(x, t, un)) + S′(un)Φ(x, t, un)∇un = f S′(un) in D′(Q),
(2.24)

where Bn
r (x, τ) =

∫ τ

0

∂bn(x, s)
∂s

S′(s) ds.

Our aim here is to pass to the limit in each term in the previous equality, as n → ∞ in each term of (2.24)
(see [19]) to conclude that u satisfies (2.11). It remains to show that BS(x, u) satisfies the initial condition of
(2.12). To do this, recall that, S′ has a compact support, we have Bn

S(x, un) is bounded in L∞(Q). Moreover, (2.24)

and the above considerations on the behavior of the terms of this equation show that
∂Bn

S(x, un)

∂t
is bounded in

L1(Q) + W−1,xLM(Q). As a consequence, an Aubin’s type Lemma (cf [21, Corollary 4] ) implies that Bn
S(x, un)

lies in a compact set of C0([0, T]; L1(Ω)). It follows that, Bn
S(x, un)(t = 0) converges to BS(x, u)(t = 0) strongly in

L1(Ω). Due to remark 2.1 and the fact that bn(x, u0n) −→ b(x, u0) in L1(Ω), we conclude that Bn
S(x, un)(t = 0) =

Bn
S(x, u0n) converges to BS(x, u)(t = 0) strongly in L1(Ω). Then we conclude that BS(x, u)(t = 0) = BS(x, u0) in

Ω.
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3. NONLINEAR PARABOLIC INEQUALITIES WITH LOWER ORDER TERMS

3.1. Assumptions and statement of main result. Consider the following convex set

Kψ =
{

u ∈ Lp(0, T; W1,p
0 (Ω) : u ≥ ψ a.e. in Q

}
(3.1)

where ψ : Ω→ R is a measurable function. On the convex Kψ we assume that

(C): ψ ∈ Lp(0, T; W1,p
0 (Ω)) ∩ L∞(Q),

∂ψ

∂t
∈ L1(Q) such that u0 ≥ ψ.

In this section, we discuss an existence of entropy solutions in the setting of the classical Sobolev spaces to the
following obstacle problem

u ≥ ψ a.e in Q
∂b(x, u)

∂t
− div a(x, t, u,∇u) + div Φ(x, t, u) = f in Q

b(x, u)(t = 0) = b(x, u0) in Ω
u = 0 on ∂Ω× (0, T).

(3.2)

where a : Q × R × RN → RN is a Carathéodory function satisfying, for almost every (x, t) ∈ Q and for all
s ∈ R, ξ, η ∈ RN(ξ 6= η) the following conditions

(A1): There exists a function h ∈ Lp
′
(Q) and some positive constant ν such that

|a(x, t, s, ξ)| ≤ ν(h(x, t) + |ξ|p−1).

(A2): The vector a is strictly monotone(
a(x, t, s, ξ)− a(x, t, s, η)

)
·
(

ξ − η
)
> 0.

(A3): a is coercive, there exists a constant α > 0 such that

a(x, t, s, ξ) · ξ ≥ αM(|ξ|).
(A4): For the lower order term, we assume for all s ∈ R and for almost every x ∈ Ω, there exists c ∈ Lτ(Q),

for τ = N+p
p−1 such that

|Φ(x, t, s)| ≤ c(x, t)|s|γ, with γ =
N + 2
N + p

(p− 1).

(A5): For that concerns the right hand,

f ∈ L1(Q) and u0 ∈ L1(Ω).

The main result of this section is the theorem below.

Theorem 3.1. Assume that (A1)-(A5) hold true. Then there exists at least one solution u such that b(x, u) ∈ L∞(0, T; L1(Ω)),
b(x, u)(t = 0) = b(x, u0) a.e. in Ω and for all t ∈]0, T],

Tk(u) ∈ Lp(0, T; W1,p
0 (Ω)), u ≥ ψ a.e in Q,∫ T

0
〈∂ϕ

∂s
,
∫ u

0

∂b(x, z)
∂s

T′k(z− ϕ) dz〉 ds

+
∫

Ω

∫ u0

0

∂b(x, s)
∂s

Tk(s− ϕ(0)) ds dx +
∫

Q
a(x, s, u,∇u)∇Tk(u− ϕ) dx ds

−
∫

Q
Φ(x, s, u)∇Tk(u− ϕ) dx ds ≤

∫
Q

f Tk(u− ϕ) dx ds,

∀ϕ ∈ kψ ∩ L∞(Q) with ϕ(T) = 0 such that
∂ϕ

∂t
∈ Lp′(0, T; W−1,p′(Ω)).

(3.3)
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The proof of the above theorem is divided into five steps.
Step 1: Approximate problems. For each ε > 0, let fε be a sequence of functions in Lp′(Q) which converges

strongly to f in L1(Q) and put

aε(x, t, s, ξ) = a(x, t, T1
ε
(s), ξ) a.e (x, t) ∈ Q, ∀s ∈ R, ∀ξ ∈ RN ,

Φε(x, t, r) = Φ(x, t, T1
ε
(r)) a.e (x, t) ∈ Q, ∀r ∈ R,

And let u0ε ∈ C∞
0 (Ω) such that

b(x, u0ε) −→ b(x, u0) strongly in L1(Ω).
Considering the following approximate problem

∂b(x, uε)

∂t
− div aε(x, t, uε,∇uε) + div Φε(x, t, uε)−

1
ε

T1
ε
(uε − ψ)− = fε in Q

b(x, uε)(t = 0) = bε(x, u0) in Ω
uε = 0 on ∂Ω× (0, T).

(3.4)

Thus, from [17], the approximate problem has at least one weak solution uε.
Step 2: A priori estimates. Let τ1 ∈ (0, T), and t fixed in (0, τ1), for a subsequence still indexed by ε,∫

Qτ1

|∇Tk(b(x, uε)− b(x, ψ))|p dx ds ≤ C, (3.5)

uε converges almost every where to u in Q, (3.6)

Tk(uε) converges weakly to Tk(u) in Lp(0, T; W1,p
0 (Ω)), (3.7)

b(x, uε) ⇀ b(x, u) weakly in Lp(0, T; W1,p
0 (Ω)), (3.8)

a
(

x, t, Tk(uε),∇Tk(uε)
)
⇀ ξk weakly in (Lp′(Q))N , (3.9)

as ε tends to 0 for any k > 0 and
b(x, u) ∈ L∞(0, T; L1(Ω)). (3.10)

Proof. One can consult [1].

Step 3: Intermediate results. In this step, we give some lemma (for a full proof we refer to [1])

Lemma 3.1. The subsequence of uε defined in Step 1 satisfies

lim
m→+∞

lim sup
ε→0

1
m

∫
{|uε |≤m}

a(x, t, uε,∇uε)∇uε dx dt = 0. (3.11)

Lemma 3.2. Let k ≥ 0 be fixed. Let S be a C∞R-function such that S(r) = r for |r| ≤ k, and suppS′ is compact. Then

lim inf
µ→+∞

lim
ε→0

∫ T

0
〈∂b(x, uε)

∂t
, S′(b(x, uε)− b(x, ψ))(Tk(b(x, uε)− b(x, ψ))

− Tk(b(x, u)− b(x, ψ)))µ)〉 dt ≥ 0,
(3.12)

where 〈., .〉 denotes the duality pairing between L1(Ω) + W−1,p′(Ω) and L∞(Ω) ∩W1,p(Ω).

Lemma 3.3. The subsequence of uε satisfies for any k ≥ 0

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

a(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) dx dt ≤
∫ T

0

∫ t

0

∫
Ω

ξk∇Tk(u) dx dt. (3.13)

Lemma 3.4. The subsequence uε defined in step 1 satisfies for any k ≥ 0

lim
ε→0

∫
Q
(a(x, t, Tk(uε),∇Tk(uε))− a(x, t, Tk(uε),∇Tk(u)))

× (∇Tk(uε)−∇Tk(u)) dx dt = 0,
(3.14)
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ξk = a(x, t, Tk(u),∇Tk(u)) a.e in Q, (3.15)

a(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) ⇀ a(x, t, Tk(u),∇Tk(u))∇Tk(u) as ε→ 0 (3.16)

Step 4: Renormalization identity.

Lemma 3.5. [1] The limit u of the subsequence uε satisfies for any k ≥ 0

lim
m→+∞

1
m

∫
{|u|≤m}

a(x, t, u,∇u)∇u dx dt = 0 and u ≥ ψ a.e in Ω. (3.17)

Step 5: Passing to the limit. The limit u of the subsequence uε satisfies . Indeed, for ϕ ∈ Kψ ∩ L∞(Q),
∂ϕ

∂t
∈

Lp′(0, T; W−1,p′(Ω)) such that ϕ(T) = 0, testing the approximate problem by Tk(uε − ϕ) and using integration by
parts, we have ∫ t

0
〈∂b(x, uε)

∂s
, Tk(uε − ϕ)〉 ds−

∫
Qt

aε(x, t, uε,∇uε)∇Tk(uε − ϕ) dx ds

−
∫

Qt
Φε(x, t, uε)∇Tk(uε − ϕ) dx ds− 1

ε

∫
Qt

T1
ε
(uε − ψ)−Tk(uε − ϕ) dx ds

=
∫

Qt
fεTk(uε − ϕ) dx ds.

(3.18)

We pass to the limit in each terms of the above equality as ε → 0, it follows that u satisfies and by a classical
arguments for the use of Aubin’s type lemma, b(x, u) verifies the initial condition.

4. EXISTENCE OF SOLUTIONS FOR NONLINEAR PARABOLIC SYSTEMS VIA WEAK CONVERGENCE
OF TRUNCATIONS

4.1. Assumptions and problem setting. We prove existence of renormalized solution for the following nonlinear
parabolic systems

(bi(ui))t − div
(

a(x, ui, Dui) + Φi(ui)
)
+ fi(x, u1, u2) = 0 in Q, (4.1)

ui = 0 on Γ := (0, T)× ∂Ω, (4.2)

bi(ui)(t = 0) = bi(ui,0) in Ω, (4.3)

where i = 1, 2. The vector field a satisfies the assumptions below:
a : Ω×R×RN → RN is a Carathéodory function and

There exists α > 0 such that
a(x, s, ξ).ξ ≥ α|ξ|p (4.4)

for almost every x ∈ Ω, for every s ∈ R, for every ξ ∈ RN .
For each k > 0, there exists βk > 0 and a function Ck in Lp′(Ω) such that

|a(x, s, ξ)| ≤ Ck(x) + βk|ξ|p−1 (4.5)

for almost every x ∈ Ω, for every s such that |s| ≤ k, and for every ξ ∈ RN .
The vector field a is monotone with respect to its third argument,(

a(x, s, ξ)− a(x, s, ξ ′)
)(

ξ − ξ ′
)
≥ 0, (4.6)

for any s ∈ R, for any (ξ, ξ ′) ∈ R2N and for almost every x ∈ Ω.
Moreover, we suppose that for i = 1, 2,

Φi : R→ RN is a continuous function, (4.7)

bi : R→ R is a strictly increasing C1-function with bi(0) = 0, (4.8)
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fi : Ω×R×R→ R is a Carathéodory function with

f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x ∈ Ω, ∀s ∈ R. (4.9)

and for almost every x ∈ Ω, for every s1, s2 ∈ R,

sign(si) fi(x, s1, s2) ≥ 0. (4.10)

The growth assumptions on fi are as follows: For each k > 0, there exists σk > 0 and a function Fk in L1(Ω) such
that

| f1(x, s1, s2)| ≤ Fk(x) + σk |b2(s2)| (4.11)
a.e. in Ω, for all s1 such that |s1| ≤ k, for all s2 ∈ R. For each k > 0, there exists λk > 0 and a function Gk in
L1(Ω) such that

| f2(x, s1, s2)| ≤ Gk(x) + λk |b1(s1)| (4.12)
for almost every x ∈ Ω, for every s2 such that |s2| ≤ k, and for every s1 ∈ R. Finally, we assume the following
condition on the initial data ui,0:

ui,0 is a measurable function such that bi(ui,0) ∈ L1(Ω), for i = 1, 2. (4.13)

Definition 4.1. A couple of functions (u1, u2) defined on Q is called a renormalized solution of (4.1)-(4.3) if for i = 1, 2
the function ui satisfies

Tk(ui) ∈ Lp(0, T; W1,p
0 (Ω)) and bi(ui) ∈ L∞(0, T; L1(Ω)), (4.14)

for any k ≥ 0. ∫
{(t,x)∈Q ; n≤|ui(x,t)|≤n+1}

a(x, ui,∇ui)∇ui dx dt→ 0 as n→ +∞, (4.15)

and if, for every function S in W2,∞(R) which is piecewise C1 and such that S′ has a compact support, we have

∂bi,S(ui)

∂t
− div(S′(ui)a(x, ui,∇ui)) + S′′(ui)a(x, ui,∇ui)∇ui

− div(S′(ui)Φi(ui)) + S′′(ui)Φi(ui)∇ui + fi(x, u1, u2)S′(ui) = 0 in D′(Q),
(4.16)

and
bi,S(ui)(t = 0) = bi,S(ui,0) in Ω, (4.17)

where bi,S(r) =
∫ r

0
b′i(s)S

′(s) ds.

The main result of this section reads as the theorem.

Theorem 4.1. Under assumptions (4.4)-(4.13), there exists at least a renormalized solution (u1, u2) of Problem (4.1)-(4.3).

Proof. Step 1. Let us introduce the following regularization of the data: for ε > 0 and i = 1, 2

bi,ε(s) = bi(T1
ε
(s)) + ε s ∀s ∈ R, (4.18)

aε(x, s, ξ) = a(x, T1
ε
(s), ξ) a.e. in Ω, ∀s ∈ R, ∀ξ ∈ RN , (4.19)

Φi,ε is a Lipschitz continuous bounded function from R into RN (4.20)

such that Φε
i converges uniformly to Φi on any compact subset of R as ε tends to 0.

f ε
1(x, s1, s2) = f1(x, T1

ε
(s1), T1

ε
(s2)) a.e. in Ω, ∀s1, s2 ∈ R, (4.21)

f ε
2(x, s1, s2) = f2(x, T1

ε
(s1), T1

ε
(s2)) a.e. in Ω, ∀s1, s2 ∈ R, (4.22)

uε
i,0 ∈ C∞

0 (Ω), bi,ε(uε
i,0)→ bi(ui,0) in L1(Ω) as ε tends to 0. (4.23)

Let us now consider the regularized problem

∂bi,ε(uε)

∂t
− div

(
aε(x, uε, Duε) + Φi,ε(uε)

)
+ f ε

i (x, uε
1, uε

2) = 0 in Q, (4.24)

uε
i = 0 on (0, T)× ∂Ω, (4.25)
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bi,ε(uε
i )(t = 0) = bi,ε(uε

i,0) in Ω. (4.26)

In view of (4.8) and (4.18), for i = 1, 2, we have

b′i,ε(s) ≥ ε, |bi,ε(s)| ≤ max
|s|≤ 1

ε

|bi(s)|+ 1 ∀s ∈ R,

In view of (4.5), (4.11) and (4.12), aε, f ε
1 and f ε

2 satisfy: There exists Cε ∈ Lp′(Ω), Fε ∈ L1(Ω), Gε ∈ L1(Ω) and
βε > 0, σε > 0, λε > 0, such that

|aε(x, s, ξ)| ≤ Cε(x) + βε|ξ|p−1 a.e. in x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN .

| f ε
1(x, s1, s2)| ≤ Fε(x) + σε max

|s|≤ 1
ε

|bi(s)| a.e. in x ∈ Ω, ∀s1, s2 ∈ R,

| f ε
2(x, s1, s2)| ≤ Gε(x) + λε max

|s|≤ 1
ε

|bi(s)| a.e. in x ∈ Ω, ∀s1, s2 ∈ R.

As a consequence, proving the existence of a weak solution uε
i ∈ Lp(0, T; W1,p

0 (Ω)) of (4.24)-(4.26) is an easy task
(see e.g. [9]).

Step 2. Using Tk(uε
i ) as a test function in (4.24) leads to∫

Ω
bk

i,ε(u
ε
i )(t) dx +

∫ t

0

∫
Ω

aε(x, uε
i ,∇uε

i )∇Tk(uε
i ) dx ds

+
∫ t

0

∫
Ω

Φi,ε(uε
i )∇Tk(uε

i ) dx ds +
∫ t

0

∫
Ω

f ε
i (x, uε

1, uε
2)Tk(uε

i ) dx ds

=
∫

Ω
bk

i,ε(u
ε
i,0) dx

(4.27)

for i = 1, 2, for almost every t in (0, T) where bk
i,ε(r) =

∫ r

0
Tk(s)b′i,ε(s) ds. The Lipschitz character of Φi,ε, Stokes

formula together with the boundary condition (4.25) allow to obtain obtain∫ t

0

∫
Ω

Φi,ε(uε
i )∇Tk(uε

i ) dx ds = 0, (4.28)

for almost any t ∈ (0, T). Now, as 0 ≤ bk
i,ε(u

ε
i,0) ≤ k|bi,ε(uε

i,0)| a.e. in Ω, it follows that 0 ≤
∫

Ω
bk

i,ε(u
ε
i,0) dx ≤

k
∫

Ω
|bi,ε(uε

i,0)| dx. Since aε satisfies (4.19), f ε
i satisfies (4.21), (4.22), we deduce from (4.31) ( taking into account the

properties of bk
i,ε and uε

i,0 ) that

Tk(uε
i ) is bounded in Lp(0, T; W1,p

0 (Ω)) (4.29)

independently of ε for any k ≥ 0. Proceeding as in [4, 5], we prove that for any S ∈ W2,∞(R) such that S′ is
compact (supp S′ ⊂ [−k, k])

S(bi,ε(uε
i )) is bounded in Lp(0, T; W1,p

0 (Ω)), (4.30)
and

∂S(bi,ε(uε
i ))

∂t
is bounded in L1(Q) + Lp′(0, T; W−1,p′(Ω)), (4.31)

independently of ε, as soon as ε < 1
k .

Step 3. Arguing as in [4, 5], estimates (4.30) and (4.31) imply that for a subsequence still indexed by ε,

uε
i converges almost every where to ui in Q (4.32)

and thanks to (4.29),

Tk(uε
i ) converges weakly to Tk(ui) in Lp(0, T; W1,p

0 (Ω)), (4.33)

θn(uε
i ) ⇀ θn(ui) weakly in Lp(0, T; W1,p

0 (Ω)) (4.34)

aε

(
x, Tk(uε

i ),∇Tk(uε
i )
)
⇀ Xi,k weakly in (Lp′(Q))N . (4.35)
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as ε tends to 0 for any k > 0 and any n ≥ 1. Here, for any k > 0 and for i = 1, 2, Xi,k belongs to (Lp′(Q))N . We
now establish that bi(ui) belongs to L∞(0, T; L1(Ω)). Indeed using 1

σ Tσ(uε
i ) as a test function in (4.24) leads to

1
σ

∫
Ω

bσ
i,ε(u

ε
i )(t) dx +

1
σ

∫ t

0

∫
Ω

aε(x, uε
i ,∇uε

i )∇Tσ(uε
i ) dx ds

+
1
σ

∫ t

0

∫
Ω

Φi,ε(uε
i )∇Tσ(uε

i ) dx ds +
1
σ

∫ t

0

∫
Ω

f ε
i (x, uε

1, uε
2)Tσ(uε

i ) dx ds

=
1
σ

∫
Ω

bσ
i,ε(u

ε
i,0) dx,

(4.36)

for almost any t in (0, T). Where, bn
i,ε(r) =

∫ r

0
b′i,ε(s)Tσ(s) ds. The Lipschitz character of Φε, Stokes formula

together with the boundary condition (4.25) allow to obtain

1
σ

∫ t

0

∫
Ω

Φi,ε(uε
i )∇Tσ(uε

i ) dx ds = 0. (4.37)

Since aε satisfies (4.4) and f ε
i satisfies (4.10), letting σ go to zero, it follows that∫

Ω
|bi,ε(uε

i )(t)| dx ≤ ‖bi,ε(uε
i,0)‖L1(Ω) (4.38)

for almost t ∈ (0, T). Recalling (4.23), (4.32) and (4.38) makes it possible to pass to the limit-inf and we show that
bi(ui) belongs to L∞(0, T; L1(Ω)). The pointwise convergence of uε to u and bi,ε(uε

0) to bi(u0) imply that

lim sup
ε→0

∫ t

0

∫
Ω

a(x, uε
i , Duε

i )Dθn(uε
i ) dx ds ≤

∫
Ω

bn
i (ui,0) dx, (4.39)

Since θn converge to zero everywhere as n goes to zero, the Lebesgue’s convergence theorem permits to conclude
that

lim
n→+∞

lim sup
ε→0

∫
{n≤|uε

i |≤n+1}
aε(x, uε

i ,∇uε
i )∇uε

i dx dt = 0. (4.40)

Step 4. In this step we give the following Lemma which is the key point in the monotonicity arguments.

Lemma 4.1. The subsequence of uε defined in Step 3 satisfies: For any k ≥ 0,

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

a(uε
i ,∇Tk(uε

i ))∇Tk(uε
i ) dx ds dt

≤
∫ T

0

∫ t

0

∫
Ω

Xi,k∇Tk(ui) dx ds dt

(4.41)

Step 5. Monotonicity estimate.

Lemma 4.2. The subsequence of uε
i defined in step 3 satisfies: For any k ≥ 0,

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

[
a(Tk(uε

i ),∇Tk(uε
i ))− a(Tk(uε

i ),∇Tk(ui))
]

×
[
∇Tk(uε

i )−∇Tk(ui)
]

dx ds dt = 0 .
(4.42)

Step 6. In this step we identify the weak limit Xi,k and we prove the weak L1 convergence of the “truncated”
energy a

(
Tk(x, uε

i ),∇Tk(uε
i )
)
∇Tk(uε

i ) as ε tends to 0.

Lemma 4.3. For fixed k ≥ 0, as ε tends to 0, we have

Xi,k = a
(

x, Tk(uε
i ),∇Tk(uε

i )
)

a.e. in Q. (4.43)

Also, as ε tends to 0,
a
(
Tk(uε

i ),∇Tk(uε
i )
)
∇Tk(uε

i ) ⇀ a
(
Tk(ui),∇Tk(ui)

)
∇Tk(ui), (4.44)

weakly in L1(Q).
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Step 7. In this step, ui is shown to satisfy (4.16) and (4.17). Let S be a function in W2,∞(R) such that S′ has
a compact support. Let k be a positive real number such that supp S′ ⊂ [−k, k]. Pointwise multiplication of the
approximate equation (4.24) by S′(uε

i ) leads to

∂bε
i,S(u

ε
i )

∂t
− div

(
S′(uε

i )aε(x, uε
i ,∇uε

i )
)
+ S′′(uε

i )aε(x, uε
i ,∇uε

i )∇uε
i

− div
(

S′(uε
i )Φi,ε(uε

i )
)
+ S′′(uε

i )Φε(uε
i )∇uε

i + f ε
i (x, uε

1, uε
2)S
′(uε

i ) = 0
(4.45)

in D′(Q), for i = 1, 2. In what follows we pass to the limit as ε tends to 0 in each term of (4.45).
As a consequence of the convergence result of each term above (see [2]), we pass to the limit as ε tends to

0 in equation (4.45) and we conclude that u satisfies (4.16). It remains to show that bi,S(ui) satisfies the initial
condition (4.17). To this end, firstly remark that, S being bounded, bε

i,S(u
ε
i ) is bounded in L∞(Q). Secondly,

(4.45) and the above considerations on the behavior of the terms of this equation show that
∂bε

i,S(u
ε
i )

∂t is bounded
in L1(Q) + Lp′(0, T; W−1,p′(Ω)). As a consequence, an Aubin’s type lemma (see, e.g, [21], Corollary 4), bε

i,S(u
ε
i )

lies in a compact set of C0([0, T]; W−1,s(Ω)) for any s < in f
(

p′, N
N−1

)
. It follows that bε

i,S(u
ε
i )(t = 0) = bε

i,S(u
ε
i,0)

converges to bi,S(ui)(t = 0) strongly in W−1,s(Ω). On the order hand, (4.26) and the smoothness of S imply that
bε

i,S(u
ε
i,0) converges to bi,S(ui,0)(t = 0) strongly in Lq(Ω) for all q < +∞ and this in turn implies (4.17).
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