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A posteriori error estimates for mixed finite volume
solution of elliptic boundary value problems

Fayssal Benkhaldoun1,a, Mohammed Seaid2,b and Amadou Mahamane3,c

Abstract. The major emphasis of this work is the derivation of a posteriori error estimates for the mixed finite
volume discretization of second-order elliptic equations. The estimates are established for meshes consisting of
simplices on unstructured grids. We consider diffusion problems with nonhomogeneous diffusion coefficients.
The error estimates are of residual types and are formulated in the energy semi-norm for a locally postprocessed
approximate solutions. The estimates are fully computable and locally efficient that they can serve as indicators
for adaptive refinement and for the actual control of the error. Numerical results are shown for two test
examples in two space dimensions. It is found that the proposed adaptive mixed finite volume method offers
a robust and accurate approach for solving second-order elliptic equations, even when highly nonhomogeneous
diffusion coefficients are used in the simulations.
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1. Introduction

Second-order elliptic problems with discontinuous coefficients arise in mathematical modeling processes in dif-
fusion in composite media, heat and mass transfer, flows in porous media, among others. In many applications
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for these problems, the data describing the properties of the medium (conductivity, permeability, porosity) involve
high discontinuities or numerous heterogeneities. Therefore, elliptic equations with discontinuous coefficients impose
great challenges to the numerical methods. In general, to solve numerically such equations, we commonly use finite
element or finite volume methods. There are several highly desirable properties of the discretization beyond the
classical stability and accuracy, such as local mass conservation, discrete maximum principle, etc, that are crucial
in capturing the important details of the solutions of complicated problems on relatively coarse grids. Then, if we
work with meshes adapted to the spatial distribution of the coefficients, we obtain a system of large size, that is
prohibitively expensive to solve. In order to avoid this, we would want to use any reasonable structured mesh.
Thereby, some elements of the mesh will be crossed by the coefficients discontinuity surfaces and this implies to re-
place on these elements the true coefficient by coefficients that generate nearly equivalent description of the physical
properties.

Finite volume methods are well adapted to the discretization of conservation laws, see for example [18]. These
methods provide efficient numerical schemes for elliptic equations as well as for convection-dominated parabolic
equations. However, because of the heterogeneous coefficients in the considered equations, the standard four-point
finite volume schemes cannot be used here. Another class of finite volumes schemes for solving diffusion equations
on two- and three-dimensional unstructured grids has been developed in [14]. Other finite volume methods for
solving diffusion equations have also been studied in the literature such as Discrete Duality Finite Volume (DDFV)
method [14, 8] and Multipoint Flux Approximation (MPFA) [1] method among others. The DDFV method also
arises from the construction of discrete analogues of the divergence and flux operators which fulfill the discrete
counterpart of vector calculus identities. However, this method requires to solve the diffusion equation not only
over the primal grid but also over a dual grid. Namely, there are both cell-centered and vertex-centered unknowns.
Compared to a classical cell-centered finite volume scheme, the DDFV method necessitates twice as much degrees
of freedom over quadrangular grids. In [10], a mixed finite volume method is proposed which handles heterogeneous
diffusion problems on any grid and precisely provides good approximations of the problem. This method is suited for
unstructured grids and adaptive grid refinement as well as for efficient parallelization by domain decomposition. This
method has been successfully applied to convection-diffusion-reaction equations in [15, 4]. In the current study, we
shall analyze a discretization of second-order elliptic equations based on a mixed finite volume method. Essentially,
this approach consists of writing the considered problem in the mixed form, and discretizing the flux variable using
finite volume techniques, and the scalar variable by piecewise constants. Throughout this work, for simplicity we
restrict our attention to triangular elements, and the extension to three-dimensional problems is straightforward.

As for most mesh-based methods for solving partial differential equations, the computational cost in finite volume
methods becomes more and more important (sometimes prohibitive) when we need numerical solution with good
accuracy. It is also well known that a posteriori error analysis is one approach to find a compromise between cost and
accuracy of these methods. The importance of a posteriori error estimates for controlling an automatic, self-adaptive
mesh-refinement process is well established in recent decades; see for instance [3, 20] for extensive reviews. Deriving a
posteriori error estimates for finite volume approximations of the elliptic equations also has received much attention.
The work of Verfurth et al. [20] builds the basic foundation for the mathematical analysis of practical methods and
has been advanced by Vohraĺık et al. [21, 22] and others. In these works, the authors present a general framework for
a posteriori error analysis for finite volume methods applied to convection-diffusion-reaction problems. A posteriori
error estimates for finite volume methods have also derived in [16, 6, 13, 5] for the standard two-point finite volume
schemes, in [17, 2] for DDFV schemes, and in [7] for mimetic finite difference methods. In most of the works
mentioned above, the derivation of a posteriori error estimators needs to construct a novel solution which is more
regular than the one produced by the scheme. Sometimes this procedure is very expensive. In this work we derive
in a very cheap way a posteriori error estimators for the mixed finite volume scheme applied to elliptic equations.
The proposed method does not resolve any local linear systems and it consists of an explicit reconstruction of the
postprocessed solution using the nodal values evaluated by the method. Recently, the mixed finite volume methods,
the mimetic finite difference methods, the hybrid finite volume methods and mixed finite elements have been found
to be equivalent [11]. This finding supports the fact that the analysis presented in this study remains valid for
these methods. In this paper we derive a posteriori error estimates for the mixed finite volume discretization of
second-order elliptic equations. The natural combination of adaptive techniques with mixed finite volume methods
retains the best features of both methods and overcomes many of their defects. Their implementation relies on the
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projection operators, whose actions use only standard nodal data structures and can be evaluated locally at the
element level. Additionally, the combination turns out to be particularly attractive on modern parallel processing
architectures. Finally, by assuming the nondegeneracy property, we can obtain local lower and upper bounds for
the error of the numerical solution. We numerically illustrate the efficiency of our techniques by solving two test
examples for second-order elliptic problems with discontinuous coefficients.

The structure of the paper is a follows. In section 2 we collect some notations and preliminaries. The mixed finite
volume method is formulated in section 3. This section includes the finite volume discretization and the formulation
of the mixed finite volume method for the considered elliptic problem. In section 4 we present a posterior error
estimates for the proposed finite volume method. Section 5 contains numerical results for two test examples on
diffusion equations. Concluding remarks are given in section 6.

2. Preliminaries and Notations

We consider second-order elliptic equations with heterogeneous coefficients. For this class of problems, the
diffusion in a two-dimensional closed medium Ω ⊂ R2 with boundary ∂Ω is described by the following equation

−∇ ·
(
κ(x)∇u(x)

)
= f(x), ∀x ∈ Ω,

(1)
u(x) = 0, ∀x ∈ ∂Ω,

where f ∈ L2(Ω) is the source term and κ is the diffusion coefficient assumed to be piecewise constant such that
there exist two positive constants κ and κ for which

0 < κ ≤ κ(x) ≤ κ, a.e. x ∈ Ω.

The spatial domain Ω = Ω ∪ ∂Ω is discretized in an admissible finite volume discretization D = (M, E ,P), where
M is the set of control volumes K with Ω =

⋃
K∈MK, E is the finite set of mesh interfaces, and P = (xK)K∈M

are the mesh points in K for each K ∈ M. We denote by S the set of all nodes P in the mesh and by VP the set
of all cells K ∈M for which P is a vertex. We assume that there exists a subset EK ⊂ E such that ∂K = ∪σ∈EKσ,
for each σ ∈ EK , and nK,σ denotes the unit normal vector to σ outward to K. Furthermore, we assume that for

σ ∈ E and for a pair (K,L) ∈M2, either σ ∈ ∂Ω or σ = K ∩L and in the later case we use the notation σ = K|L.
We also use the notation m(K) and m(σ) to denote the area of K and the length of σ, respectively. Here hK is the
diameter of the cell K and h = max

K∈M
hK is the mesh size.

We define the discrete functional space HM and P 2(M) as the set of constant functions in each K ∈ M and
the set of polynomials of total degree at most 2 in each cell K, respectively. The discrete Sobolev space H1(M) is
defined by

H1(M) =
{
ϕ ∈ L2(Ω) : ϕ|K ∈ H1(K), ∀ K ∈M

}
.

We also introduce the bilinear form a(·, ·) defined in H1(M)×H1(M) as

a(v, w) =
∑
K∈M

∫
K

κ∇v·∇wdx,

and the associated energy-norm ||| · ||| defined as

|||u|||2 =
∑
K∈M

|||u|||2K ,

where

|||u|||2K =

∫
K

κ∇u·∇udx.

For each (uh,vh) ∈ HM ×H2
M, we define the following discrete norms

||uh||2L2(Ω) =
∑
K∈M

m(K)u2
K , ||vh||2L2(Ω)2 =

∑
K∈M

m(K)|vK |22,
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where | · |2 denotes the canonical Euclidean norm in R2. We define F = (FK,σ)σ∈EK ,K∈M as a family of real numbers
which approximate the flux

∫
σ
κ∇u · nK,σds and FM is the set of such families.

For a given family (ν = (νK)K∈M) of positive real numbers, we define the set Lν(M) of triplets (uh,vh, F ) ∈
HM ×H2

M ×FM such that

vK · (xσ − xK) + vL · (xL − xσ) + νKm(K)FK,σ−

νLm(L)FL,σ = uL − uK , ∀ σ = K|L ∈ Eint, (2)

vK · (xσ − xK) + νKm(K)FK,σ = −uK , ∀ σ ∈ EK ∩ Eext.

In the sequel, unless otherwise stated, C denotes a positive constant independent of the mesh size h.

3. Mixed Finite Volume Methods

Applied to the problem (1) a mixed finite volume method yields the statement of the problem: find (u,v, F ) ∈
Lν(M) such that

FK,σ + FL,σ = 0, ∀ σ = K|L ∈ Eint, (3a)

m(K)vK =
∑
σ∈EK

FK,σκ
−1
K (xσ − xK), ∀ K ∈ M, (3b)

−
∑
σ∈EK

FK,σ = m(K)fK , ∀ K ∈ M, (3c)

where fK =
1

m(K)

∫
K

f(x)dx. It should be stressed that the mixed finite volume method (3) employs the same

techniques used in the literature for mixed finite element methods and the implementation procedure of this class of
mixed finite volume methods can be carried out as in [9] among others. Thus, for each solution (uh,vh, F ) fulfilling
the relations (2) and (3b) we define the unknowns (uσ)σ∈E as

vK · (xσ − xK) + νKm(K)FK,σ = uσ − uK , ∀ K ∈ M, ∀ σ ∈ EK , (4)

with uσ = 0 when σ ∈ Eext. The equations (3b) and (4) yield

1

m(K)

∑
σ′∈EK

FK,σ′Λ−1
K (xσ′ − xK) · (xσ − xK)+

νKm(K)FK,σ = uσ − uK , ∀ K ∈ M, ∀ σ ∈ EK .
Hence, for each K ∈ M, the above formulation leads to a linear system of algebraic equations to be solved for the
unknowns (FK,σ)σ∈EK as

AK(FK,σ)σ∈EK = (uσ − uK)σ∈EK .

Note that, due to the condition νK > 0, the matrix AK is symmetric and positive definite. In addition, the solution
of the linear system can be reformulated as

FK,σ =
∑
σ′∈EK

(A−1
K )σσ′(uσ′ − uK), ∀ K ∈ M, ∀ σ ∈ EK . (5)

Using the relation (3c), it is easy to verify

−
∑
σ′∈EK

βK,σ′uσ′ + βKuK =

∫
K

f(x)dx,

where
βK,σ′ =

∑
σ∈EK

(A−1
K )σσ′ , βK =

∑
σ′∈EK

βK,σ′ .
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Let (1)σ′∈EK denotes the vector in RCard(EK) with all its components are equal to 1, with Card(EK) denotes the
cardinality of the set EK . Using the property

(βK,σ′)σ′∈EK = A−1
K (1)σ′∈EK ,

one obtains

βK = (1)σ′∈EK ·A−1
K (1)σ′∈EK .

Since the matrix A−1
K is symmetric and positive definite, it follows

βK > 0, ∀ K ∈ M.

Thus, the solution uK is given by

uK =
1

βK

( ∑
σ′∈EK

βK,σ′uσ′ +

∫
K

f(x)dx

)
. (6)

Using the relation (3a) along with the formulation (6), we obtain∑
σ′∈EK

(
(A−1

K )σσ′ − βK,σβK,σ′

βK

)
uσ′ +

∑
σ′∈EL

(
(A−1

L )σσ′ − βL,σβL,σ′

βL

)
uσ′

=
βK,σ
βK

∫
K

f(x)dx +
βL,σ
βL

∫
L

f(x)dx, ∀ σ = K|L ∈ Eint. (7)

It is worth remarking that this linear system has been studied in [9] for which the matrix is proven to be symmetric
and positive definite. Thus, solving the linear system (7), the computation of (uh, F ) is performed using the relations
(6) and (5), whereas vh is calculated using the relation (3b).

4. A Posterior Error Estimates

In this section we present a posterior error estimates for the mixed finite volume method (3). It should be
mentioned that a priori error estimates for this class of finite volume methods can be found for instance in [9].
Hence, we present the following results:

Lemma 4.1. If the mesh M is formed using simplex then the finite volume approximation (uh,vh) of the solution
(u,∇u) satisfies the following inequalities:

‖u− uh‖L2(Ω) ≤ C h, (8)

||∇u− vh||L2(Ω)2 ≤ C h. (9)

For the proof of this lemma we refer to [9, Theorem 2.3, Lemma 6.4].

To construct the error estimates we first consider a postprocessed solution denoted by ũh and then we proceed
using similar steps of the analysis presented in [22]. This consists on finding ũh as a weak solution of the following
local Neumann problems:

−∇ · (κK∇ũh) =
1

m(K)

∑
σ∈EK

−FK,σ, ∀ K ∈ M, (10a)

ũh(xK) = uK , ∀ K, ∈ M, (10b)

−κK∇ũh|K · nK,σ = −FK,σ
m(σ)

, ∀ σ ∈ EK , ∀ K ∈ M, (10c)

where uK is the approximation of uh in the control volume K, FK,σ is the approximated flux at the surface σ
of the element K. Note that similar estimations are presented in [22] on conform meshes formed of simplices for
second-order polynomial solutions ũh.



204 F. BENKHALDOUN, M. SEAID AND A. MAHAMANE

We define the functions (φK,σ)σ∈EK ,K∈M as [12]

∆φK,σ(x) =
m(σ)

m(K)
, a.e. x ∈ K,∫

K

φK,σ(x)dx = 0,

∇φK,σ(y) · nK,σ = 1, a.e. y ∈ σ,

∇φK,σ(y) · nK,σ̃ = 0, a.e. y ∈ σ̃, σ̃ ∈ EK , σ̃ 6= σ .

We also define the coefficients αK,σ as

αK,σ :=

(
κ−1
K

FK,σ
m(σ)

− vK · nK,σ
)
, ∀ σ ∈ EK , ∀ K ∈ M.

Lemma 4.2. Assume a triangular mesh M and (uh,vh, F ) is the solution of the problem (3). The solution ũh of
the local problems (10) is given by

ũh|K(x) = uK + vK · (x− xK) +
∑
σ∈EK

αK,σ
(
φK,σ(x)− φK,σ(xK)

)
, ∀ K ∈ M. (11)

Proof. By definition of the solution ũh, it satisfies the equation (10b). From (11) we obtain

∇ũ|K = vK +
∑
σ∈EK

αK,σ∇φK,σ, ∀ K ∈ M.

Hence, for each σ0 ∈ EK

−κK∇ũh|K · nK,σ0
=

(
−κKvK − κK

∑
σ∈EK

αK,σ∇φK,σ

)
· nK,σ0

.

Using the definition of the functions φK,σ and the coefficients αK,σ, we obtain

−κK∇ũh|K · nK,σ0
= − FK,σ0

m(σ0)
,

and therefore, ũh solves the equation (10c). Consequently, ũh solves the equation (10a) and this resumes the proof.

Lemma 4.3. Under the assumptions of Lemma 4.2, the solution ũh ∈ P 2(M) and ũh|K(x) is given by

ũh|K(x) = aK(x2 + y2) + bKx+ cKy + dK , ∀ K ∈ M, (12)

where

aK = − 1

4κK
fK . (13)

Proof. From the analysis reported in [12] it is known that for triangular elements

∇φK,σ(x) =
x− aσ
hσ

,

where aσ is a nodal point in the triangle K opposite to the face σ, and hσ is the distance between aσ and σ. Hence,
φK,σ is a second-order polynomial of the following form

aK,σ(x2 + y2) + bK,σx+ cK,σy + dK,σ,

and ũh|K(x) is of the required form (12). Next we show that aK satisfies the equation (13). From the definition of
ũh|K(x) we have

∆ũh|K = 4aK .
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Using the definition of ũh|K in (11) yields

∆ũh|K =
∑
σ∈EK

αK,σ∆φK,σ.

By substituting the expressions of αK,σ and ∆φK,σ one obtains

4aK = κ−1
K

1

m(K)

∑
σ∈EK

FK,σ −
1

m(K)
vK ·

(∑
σ∈EK

m(σ)nK,σ

)
.

Since the mesh M is assumed to be triangular∑
σ∈EK

m(σ)nK,σ = 0, ∀ K ∈M.

The relation (13) holds following the equation (3c) from the definition of the considered mixed finite volume method.

Lemma 4.4. If the nodal points (xK)K∈M are selected such that each K ∈ M, xK is the isobarycentre of the
element K, then

∇ũh(xK) = vK , ∀ K ∈M.

Proof. From (11) we get

∇ũh(xK) = vK +
∑
σ∈EK

αK,σ∇φK,σ(xK).

By substituting αK,σ and ∆φK,σ using their associated expressions one obtains

∇ũh(xK) = vK +
∑
σ∈EK

(
κ−1
K

FK,σ
m(σ)

− vK · nK,σ
)

xK − aσ
hσ

,

however,

hσ =
2m(K)

m(σ)
and xK − aσ = 2(xσ − xK), ∀ σ ∈ EK .

Thus,

∇ũh(xK) = vK +
1

m(K)

∑
σ∈EK

κ−1
K FK,σ(xσ − xK)− 1

m(K)

∑
σ∈EK

m(σ)vK · nK,σ(xσ − xK).

Using the relation (3b) we obtain

vK =
1

m(K)

∑
σ∈EK

κ−1
K FK,σ(xσ − xK),

and the application of the results from [9, Lemma 6.1] to vK gives

vK =
1

m(K)

∑
σ∈EK

m(σ)vK · nK,σ(xσ − xK),

and the proof is achieved.

Lemma 4.5. Let (uh,vh) be the approximation of (u,∇u) by the proposed mixed finite volume method and let ũh
be the reconstructed solution in (11). Hence,

‖ũh − uh‖L2(Ω) ≤ C h , (14)

||∇ũh − vh||L2(Ω)2 ≤ C h , (15)
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Proof. Since by definition ũh(xK) = uK and ũh|K is a second-order polynomial, we have

ũh|K(x)− uK = ∇ũh(xK) · (x− xK) +
1

2
(x− xK) ·H(xK)(x− xK),

where H(xK) is the Hessian matrix of ũh|K in xK . Using the form of ũh|K , we obtain

H(x) = 2aK , ∀ x ∈ K.

From Lemma 4.4, it follows that

ũh(x)− uK = vK · (x− xK) + aK |x− xK |22, ∀ x ∈ K.

Using the Young inequality (ab ≤ 1
2 (a2 + b2)) and the Cauchy-Schwartz inequality, we obtain(

ũh|K(x)− uK
)2

≤ 2
(
|vK |2|x− xK)|2

)2

+ 2a2
K |x− xK |42.

Let (
ũh|K(x)− uK

)2

≤ 2
(
|vK |22h2

K + a2
Kh

4
K

)
≤ 2

(
|vK |22h2 +

h4

16κ2
fK

)
,

where we have used the definition of aK , the inequality hK ≤ h, and the assumption

κ ≤ κ(x), a.e. x ∈ Ω.

Integrating over K and summing over all elements K, we obtain∑
K∈M

∫
K

(ũh(x)− uK)2dx ≤ 2h2
∑
K∈M

m(K)

(
|vK |22 +

h2

16κ2
f2
K

)
.

Let

‖ũh − uh‖2L2(Ω) ≤ 2h2

(
||vh||2L2(Ω)2 +

h2

16κ2
||f ||2L2(Ω)

)
,

≤ 2h2

(
||vh||2L2(Ω)2 +

diam(Ω)2

16κ2
||f ||2L2(Ω)

)
,

where diam(Ω) is the diameter of the domain Ω. It follows from [9, Lemma 4.1] that

||vh||2L2(Ω)2 ≤ C̃||f ||
2
L2(Ω),

where C̃ is a positive constant independent of the mesh variable h. Hence, we obtain the estimation (14).

Next we proof the second estimation (15). Since the Hessian matrix H of ũh satisfies H(x) = 2aK , ∀ x ∈ K
and ∇ũh(xK) = vK , we can apply the mean value theorem as∣∣∣∇ũh(x)− vK

∣∣∣
2
≤ 2|aK ||x− xK |2 ≤ 2|aK |h.

Taking the squared of the above inequality and integrating over K yield∑
K∈M

∫
K

|∇ũh(x)− vK |22dx ≤
h2

4κ2

∑
K∈M

m(K)f2
K ,

which implies

||∇ũh − vh||L2(Ω)2 ≤
1

2κ
||f ||L2(Ω)h.

This completes the proof of the lemma.

Lemma 4.6 (a priori estimation for ũh). Let u be the weak solution of the problem (1) and let ũh be the postprocessed
solution given by (11). Hence,

||∇u−∇ũh||L2(Ω)2 ≤ C h ,

‖u− ũh‖L2(Ω) ≤ C h .
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Proof. By virtue of triangle inequality, we get

||u− ũh||L2(Ω) ≤ ||u− uh||L2(Ω) + ||uh − ũh||L2(Ω),

and
||∇u−∇ũh||L2(Ω)2 ≤ ||∇u− vh||L2(Ω)2 + ||vh −∇ũh||L2(Ω)2 .

To complete the proof of this lemma it suffices to use the estimations in Lemma 4.1 and Lemma 4.5.

Note that the previous results establish both the convergence of the postprocessed solution ũh to the weak solution
u of the problem (1) and the convergence of ∇ũh to ∇u when h → 0, see for example [22]. However, it should be
stressed that to establish these results, some properties on the solution ũh are essentially necessary such as the fact
that ũh and ∇ũh must equal respectively, uK and vK at xK . As a consequence, the assumption made on the finite
volume method in [22, Theorem 3.1] is not used in the analysis presented in this study.

In what follows we present error estimates for our mixed finite volume method. We start by the following result
inspired from [21, Lemma 7.1].

Lemma 4.7. For v , w ∈ H1
0 (Ω) and ṽ ∈ H1(M)

|||v − ṽ||| ≤ a(v − ṽ, v − w
|||v − w|||

) + |||ṽ − w|||. (16)

Proof. Due to the bilinear form of a(·, ·) we have

|||v − w|||2 = a(v − ṽ, v − w) + a (ṽ − w, v − w) ,

≤ |||ṽ − w||| × |||v − w|||+ |||v − w||| a
(
v − ṽ, v − w

|||v − w|||

)
,

then,

|||v − w||| ≤ |||ṽ − w|||+ a

(
v − ṽ, v − w

|||v − w|||

)
.

Hence, if |||v − ṽ||| ≤ |||v − w|||, then the proof is completed.

Let us now consider the case |||v − ṽ||| ≥ |||v − w|||. In this case,

|||v − ṽ|||2 = a (v − ṽ, v − w) + a (v − ṽ, w − ṽ) ,

≤ |||v − ṽ||| × |||w − ṽ|||+ |||v − w||| a
(
v − ṽ, v − w

|||v − w|||

)
,

and it follows

|||v − ṽ||| ≤ |||w − ṽ|||+ |||v − w|||
|||v − ṽ|||

a

(
v − ṽ, v − w

|||v − w|||

)
,

≤ |||w − ṽ|||+ a

(
v − ṽ, v − w

|||v − w|||

)
,

which resumes the proof.

We use the Oswald’s interpolation operator introduced in [21]

IOs : P 2(M) −→ P 2(M) ∩H1(Ω),

defined as ∀ vh ∈ H1(M),

IOs(vh)(P ) =


1

Card(VP)

∑
K∈VP

vh|K(P ), if P ∈ S,

{vh}|σ(P ), if P = xσ,

(17)
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where

{vh}|σ =


1

2
(vh|K + vh|L), if σ = K|L,

vh|K , if σ ∈ EK ∩ Eext.

Lemma 4.8 (Estimation of the upper bound). Let u be the weak solution of the problem (1) and let ũh be the
postprocessed solution given by (11). Hence,

|||u− ũh||| ≤


( ∑
K∈M

ηR,K(ũh)2

)1/2

+

( ∑
K∈M

ηNC,K(ũh)2

)1/2
 ,

with

ηR,K(ũh) := hK

√
CP,K
κK

‖f +∇ · (κK∇ũh|K)‖K , ∀ K ∈M,

ηNC,K(ũh) := |||ũh − IOs(ũh)|‖K , ∀ K ∈M.

Proof. Let φ be a function in H1
0 (Ω). Due to the bilinear form of a(·, ·) and the Green theorem, we have

a(u− ũh, φ) = (f, φ)Ω −
∑
K∈M

(
κK∇ũh|K ,∇φ

)
K
,

=
∑
K∈M

(
f +∇ · (κK∇ũh|K

)
, φ)K −

∑
K∈M

(
κK∇ũh|K ·n, φ

)
∂K
.

Let us consider the term
∑
K∈M

(
κK∇ũh|K ·n, φ

)
∂K

which we denote by A. Thus,

A =
∑
K∈M

∑
σ∈EK

(
κK∇ũh|K · nK,σ, φ

)
σ
.

If we assemble by interfaces, the term A can be reformulated as

A =
∑
σ∈Eint
σ=K|L

(
κK∇ũh|K · nK,σ + κL∇ũh|L · nL,σ, φ

)
σ
,

where we have used the fact that φ vanishes on the boundary.

From the equation (10c) we have

κK∇ũh|K · nK,σ + κL∇ũh|L · nL,σ =
1

m(σ)
(FK,σ + FL,σ).

By virtue of (3a) one obtains

A = 0,

and therefore,

a
(
u− ũh, φ

)
=
∑
K∈M

(
f +∇ · (κK∇ũh|K), φ

)
K
.

We set φK = 1
m(K) (φ, 1)K . using the definition (3) of the mixed finite volume method and the equation (10c) we

obtain (
f +∇ · (κK∇ũh|K), φK

)
K

= 0.

This yields

a(u− ũh, φ) = a(u− ũh, φ− φK).
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Hence,

a(u− ũh, φ) ≤
∑
K∈M

‖f +∇ · (κK∇ũh|K)‖K‖φ− φK‖K ,

≤
∑
K∈M

ηR,Kκ
1/2
K ‖∇φ‖K .

By setting φ =
u− IOs(ũh)

|||u− IOs(ũh)|||
in the above inequality and using the inequality (16) we obtain

|||u− ũh||| ≤

( ∑
K∈M

ηR,K(ũh)2

)1/2

+ |||ũh − IOs(ũh)|||,

≤


( ∑
K∈M

ηR,K(ũh)2

)1/2

+

( ∑
K∈M

ηNC,K(ũh)2

)1/2
 ,

which achieves the proof.

Notice that an estimation of the lower bound can be obtained for the proposed mixed finite volume method using
the same ideas reported in [21, Theorem 4.4].

5. Numerical Results

In this section, we present numerical results for two test examples to support our a posteriori error estimates.
We solve the two-dimensional diffusion problem with high heterogeneous diffusion coefficient κ(x) defined as

−∇ ·
(
κ(x)∇u(x)

)
= f(x), ∀ x ∈ Ω,

(18)
u(x) = g(x), ∀ x ∈ ∂Ω,

where f and g are determined from a given analytical solution in polar coordinates, compare [21, 22] among others.
In both examples the numerical solution presents a singularity at the origin of the computational domain Ω. Mesh
adaptation based on the proposed error estimates is applied to get a suitable locally refined mesh for triangular
elements.

The mesh generation is based on the Delaunay triangulation using the software Triangle developed in [19].
Starting from a coarse initial mesh, we consider both uniform and adaptive refinements using a procedure based in
our a posteriori estimators. The adaptive refinement consists of refining each triangle where the local value of the
estimated error is greater than the half of the maximum of the global estimator. We also denote by DoF the number
of elements in the considered mesh, by fη the effective index defined as the ratio between the related estimator and
the true error, and by ε the energy error. In all the computations reported herein, the linear systems of algebraic
equations are solved using the BiCGSTAB solver. In addition, all stopping criteria for iterative solvers were set to
10−9, which is small enough to guarantee that the algorithm truncation error dominates the total numerical error.

5.1. Example 1. We solve the diffusion problem (18) in the squared domain Ω = [−1, 1]2 divided in four subdo-
mains Ωi (i = 1, . . . , 4) as shown in Figure 1. The diffusion coefficient κ is constant in each subdomain (κ|Ωi = κi,
i = 1, . . . , 4) and functions f and g are selected such that the exact solution u in polar coordinates (r, θ) is

u|Ωi(r, θ) = rα
(
ai sin (αθ) + bi cos (αθ)

)
, i = 1, . . . , 4, (19)

where α is a fixed parameter in our simulations, ai and bi are constants related to the subdomains Ωi.

In the first run we use the following parameters

a1 = 0.44721360, a2 = −0.74535599, a3 = −0.94411759, a4 = −2.40170264,
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0

0

−1
−1 1

1

Ω

Ω

Ω

Ω3 4

2 1

Figure 1. Domain configuration for Example 1.

b1 = 1, b2 = 2.96039604, b3 = 0.55555556, b4 = −0.48148148,

α = 0.53544095 and the diffusion coefficients are given as

κ1 = κ3 = 5, κ2 = κ4 = 1.

Figure 2 shows the adaptive meshes, numerical solutions, exact solutions, estimated errors and absolute errors at
initial and two different iterations. As can be seen from the results presented in this figure, no noticeable differences
are visible between the exact and mixed finite volume solutions. However, in term of the estimated and absolute
errors, the difference can be clearly seen on the coarse mesh whereas, this difference becomes negligible as the mesh
is refined in the later iterations. It is clear that the proposed error estimator locates the exact error very well and the
maximum error located at the center of the computational domain is well captured. In addition, for the considered
ratio between the diffusion coefficients κ1 and κ2, we can observe that the grid is highly refined around the domain
center, which confirms the relevance of the adaption criteria based on our estimator.

In Figure 4 we display the accuracy and efficiency plots as a function of number of DoFs. The left plot in Figure
4 compares the estimated energy errors using both uniform and adaptive mesh refinements. The efficiency of the
mixed finite volume method is quantified by plotting the effective index versus the number of DoFs in the right plot
in Figure 4. For a better insight logarithmic scales are used in these plots. It is clear that for a given precision,
the adaptive refinement allows to reduce consequently the number of unknowns in comparison with the uniform
adaption. In addition, we note that both uniform refinements and adaptive refinements get good approximate
solutions as the number of DoFs increases, and the convergence orders are nearly optimal. However, to obtain
similar accuracy, the adaptive refinements will use less control volumes. It should also be noted that the efficiency
plot shows a numerical asymptotic exactness of our estimator.

Next we consider the test case with the following parameters

a1 = 0.1, a2 = −9.60396040, a3 = −0.480354870, a4 = 7.70156488,

b1 = 1.0, b2 = 2.96039604, b3 = −0.88275659, b4 = −6.45646175,

α = 0.12690207 and the diffusion coefficients are set to

κ1 = κ3 = 100, κ2 = κ4 = 1.
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Figure 4. Accuracy results (left plot) and efficiency results (right plot) as a function
of number of DoFs obtained for Example 1 using κ1 = κ3 = 5 and κ2 = κ4 = 1.
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Figure 5. Accuracy results (left plot) and efficiency results (right plot) as a function
of number of DoFs obtained for Example 1 using κ1 = κ3 = 100 and κ2 = κ4 = 1.
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Note that in this test case, the diffusion ratio κ1/κ2 is 20 times larger than in the previous test case which results in
a stronger singularity at the domain center. The exact and computed results are displayed in Figure 3. As expected
the numerical solutions show strong singularity at the center of the computational domain which is underlined by
the mesh refinements in this region of the domain. Compared to the previous test case (κ1/κ2 = 5), the mesh
refinement is mainly concentrated in the center of the domain, compare the mesh configurations after the adaptive
refinements in Figure 3. It should also be noted that the discrepancy between the true and estimated errors is
remarkably small as compared to the magnitude of the target functional. The distribution of error contributions
reflects the qualitative behavior of local errors and indicates that stronger mesh refinement is required in the vicinity
of domain center as the diffusion ratio κ1/κ2 increases.

The accuracy and efficiency results for this example are depicted in Figure 5. In the very beginning of iterations,
the uniform and estimated errors are similar; however, we notice that the errors decrease generally during the
evolving mesh adaptations while on the uniform grid the errors are evolved constantly. In spite of a large number
of control volumes, the uniform mesh without refinement at the singularity location appears disqualified when the
singularity is present after iterations; on the contrary, the established a posteriori error estimator can follow the
development of the singularity and, thus, guide the grid well adapted to physical solution behavior. This comparison
reveals the necessity of using mesh adaptation coupled with a posteriori error estimate analysis for sophisticated
diffusion simulation quality enhancement. As we show for the considered diffusion problem, this procedure allows
us to reach significant improvement in accuracy and stability, compared to the uniform adaptation, within a small
number of iterations.

5.2. Example 2. The second example consists of solving the diffusion problem (18) in a radial plane domain
divided in four subdomains Ωi (i = 1, . . . , 4) as shown in Figure 6. As in the previous example, the source functions
f and g are selected such that (19) is the exact solution of the problem in the polar coordinates (r, θ). Here, the
parameters α, the constants ai and bi, and the diffusion coefficients κi are selected the same as in the first run of
Example 1. The main aim of this example is to check the performance of the proposed mixed finite volume method
for solving heterogeneous diffusion problems in relatively complex domains. The obtained results are reported in
Figure 7 in same manner as in the previous example. Again there is a good agreement between the predicted error
with the exact one. Our numerical simulations demonstrate that the coupling of mesh adaptation and a posteriori
error estimate allows for an economical and accurate finite volume solution of diffusion equations with singularities
in their solutions.

In Figure 8 we illustrate the evolution of the energy error and effective index as a function of the number of
DoFs. Similar conclusions to the previous simulations in the squared domain can be drawn for this test example.
We can observe, that while the regions of higher error are decreasing for the estimated method when refining the
mesh, they remain almost independent of refinement for the uniform method. We attribute this phenomenon to the
geometry of the domain.

6. Conclusions

We have developed a posteriori error analysis for mixed finite volume methods for solving second-order elliptic
equations with a scalar diffusion tensor. We have derived an efficient and effective adaptive strategy based on fully
computable error estimators. Global upper and lower bounds are proved, and the considered test examples show
that both error estimators are easy to compute. Indeed no local problems are solved and we only use the values
provided by the finite volume scheme. It follows that our scheme would be suitable for coupled elliptic/hyperbolic
equations on unstructured meshes. To assess the validity and accuracy of the proposed mixed finite volume method,
it is applied to solve two specific problems with known analytical solutions. The numerical results obtained agree
favorably with the known solutions indicating that the method can be used to provide reliable and accurate numerical
solutions for diffusion equations in heterogeneous media. Future work will concentrate on extending this analysis to
second-order elliptic equations with fully diffusion tensor.
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Figure 8. Accuracy results (left plot) and efficiency results (right plot) as a function
of number of DoFs obtained for Example 2.
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