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A bifurcation result involving Sobolev trace embedding
and the duality mapping of W 1,p

Abdelouahed El Khalil1,a

Abstract. We consider the perturbed nonlinear boundary condition problem{
−∆pu = |u|p−2u+ f(λ, x, u) in Ω
|∇u|p−2∇u.ν = λρ(x)|u|p−2u on Γ.

Using the Sobolev trace embedding and the duality mapping defined on W 1,p(Ω), we prove that this problem
bifurcates from the principal eigenvalue λ1 of the eigenvalue problem{

−∆pu = |u|p−2u in Ω
|∇u|p−2∇u.ν = λρ(x)|u|p−2u on Γ.
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1. Introduction

The objective of this article is to study a global bifurcation phenomenon for elliptic problem with nonlinear
boundary conditions

−∆pu = |u|p−2u+ f(λ, x, u) in Ω (Pf )

|∇u|p−2∇u.ν = λρ(x)|u|p−2u on ∂Ω = Γ, (E)

where Ω is a bounded domain of RN , N ≥ 1, with smooth boundary Γ. Here ∇u.ν := ∂u
∂ν with ν denotes the unit

outward pointing normal vector on Γ. ρ is a weight function belongs to Lr(Γ) satisfying some hypotheses to be
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specified later. σ is the (N − 1)-dimensional surface measure of RN−1. f is assumed to be a function satisfying
some conditions to be fixed later. −∆pu denotes the p-Laplacian operator defined by

−∆pu = −div(|∇u|p−2∇u), ∀u ∈W 1,p(Ω)

which occurs in many models of physical context. Let us mention for example, in: the glaciology, the nonlinear
diffusion, the filtration problems, in particular in partial differential equations modeling non-Newtonian fluids, (for
more details, see [16] and the references therein). Notice that he condition (E) describes a flux through the boundary
Γ which depends on the solution itself. In this context and for certain physical background of such conditions, see,
e.g., [24]. Note that if p = 2, the problem (Pf )− (E) becomes linear known as the Steklov problem [5].

Let us mention here that several studies have been devoted to the investigation and extensive attention has been
paid to for classical Dirichlet problems involving the p-Laplacian operator ( see, e.g., [2, 15, 21, 23]). These results
have been extended recently to a nonlinear boundary eigenvalue problem by Bronder and Rossi in [11]. The authors
show that the principal eigenvalue λ1 (i.e., the first positive eigenvalue in the spectrum) of

−∆pu = |u|p−2u in Ω (P0)

|∇u|p−2∇u.ν = λρ(x)|u|p−2u on Γ, (E)

is simple and isolated. Motivated by these results, it is our purpose to consider the perturbed problem (Pf − (E)
related to (P0) and (E) and to elaborate the bifurcation phenomenon when λ is closed to λ1.

Such kind of problems were studied by several authors, with particular cases of nonlinearity f homogeneous
boundary conditions is u = 0 or ∂u

∂ν on Γ. In fact, e.g., for bifurcation of homogenous Dirichlet problems in regular
domains, with other conditions on functions ρ and f were studied, we just remember the works given in [7] and [14].
These results were extended for any bounded domain and ρ is locally bounded in [17] and [18], where the authors
considered bifurcation phenomena in the interior domain. However, for bifurcation problem posed on whole space
RN , we refer to [19].

Our objective is to improve the conditions on both ρ and f , so that we extend the results to our bifurcation
phenomenon by using an appropriate Sobolev trace embedding linked to a nonlinear eigenvalue problem where the
spectral parameter appears at the boundary condition. Note that the results in this article are original except the
situation where where the spectral parameter λ occurs in the main equation in Ω with f ≡ 0, ρ ≡ 0 and under the
homogenous Neumann or Dirichlet boundary conditions, i.e. ∂u

∂ν |Γ
= 0 or u|Γ = 0.

The rest of the paper is organized as follows: We state in Section 2 some assumptions and notations which we
use extensively. We discuss in this section the well-posedness of our bifurcation problem will established. In Section
3, we state and prove some results related to: the duality mapping on the functional framework W 1,p(Ω) (Lemma
3.1 and Lemma 3.2) and we prove the compactness of operators involved in the variational setting (Lemma 3.3 and
Lemma 3.4), in order to ensure the well definition of the topological degree. Section 4 deals with the proof of our
main bifurcation result established by Theorem 4.1.

2. Preliminaries

Let p > 1 and Ω be a bounded domain (open and connected) in RN , (N ≥ 1) with regular boundary Γ.
Our functional framework space is in the usual Sobolev space W 1,p(Ω) equipped by the norm

‖u‖1,p :=

[∫
Ω

(|∇u|p + |u|p) dx
] 1
p

, u ∈W 1,p(Ω),

For p > 1,
(
W 1,p(Ω), ‖.‖1,p

)
is reflexive, separable and uniformly convex Banach space [1].

X∗ stands the dual of the space X connected by the duality pairing 〈., .〉. We denote by ”⇀” (resp. ”→”) the
convergence in the weak (resp. in the norm) topology.
Let us mention that the norm Lp(Ω) (respectively Lp(Γ) ) is denoted ‖u‖p,Ω (‖u‖p,Γ respectively ).
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2.1. Well-posedness discussion. In order to further explicate our problems, we give in this subsections the
definition of the p-Laplacian without specific boundary conditions.
If u ∈W 1,p(Ω) and u satisfies P0 ( i.e., ∆pu ∈ Lp

′
(Ω)), then |∇u|p−2∇u ∈ (Lp

′
(Ω))N . Moreover, we can define the

normal derivative ∂u
∂ν |Γ

:= ∇u.ν on Γ in the sense of the trace. Furthermore, we deduce from [25]

|∇u|p−2∇u.ν|Γ ∈W
− 1
p′ ,p

′
(Γ)

and for every v ∈W 1,p(Ω)

〈|∇u|p−2∇uν, v〉 =

∫
Ω

|∇u|p−2∇u∇v dx+

∫
Ω

div(|∇u|p−2∇u)v dx, (2.1)

where p′ := p
p−1 is the Hölder’s conjugate exponent and W

− 1
p′ ,p

′
(Γ) is the dual of W

1
p′ ,p(Γ).

Note that (2.1) is equivalent to∫
Γ

(
|∇u|p−2v∇u.ν

)
dσ =

∫
Ω

|∇u|p−2∇u∇v dx+

∫
Ω

div(|∇u|p−2∇u)v dx (2.2)

Now, multiplying both sides of (E) by v ∈W 1,p(Ω) and integrating over Γ, we get∫
Γ

|∇u|p−2v∇uν dσ = λ

∫
Γ

ρ|u|p−2uv dσ. (2.3)

We conclude from the above that the operator ∆p acts from the space
(
W 1,p(Ω), ‖.‖1,p

)
into its dual

(
W 1,p(Ω)

)∗
equipped with the dual norm denoted ‖.‖∗.

Embedding theorems ( see [1], [22]) tell us that the mappings

W 1,p(Ω) ↪→ Ls(Γ)

are continuous for 1 ≤ s ≤ p∗ and are compact for 1 ≤ s < p∗, where p∗ is the critical exponent of trace Sobolev
embedding

p∗ =

{
p(N−1)
N−p if 1 < p < N

∞ if N ≤ p
and

Ls(Γ) =

{
u : Γ→ R,

∫
Γ

|u|sdσ <∞
}
.

Moreover, the mappings

W 1,p(Ω) ↪→ Ls(Ω)

are continuous for 1 ≤ s ≤ p◦ and are compact for 1 ≤ s < p◦, where p◦ is the critical exponent of standard Sobolev
embedding

p◦ =

{ pN
N−p if 1 < p < N

∞ if N ≤ p.

2.2. Assumptions. Let us formulate the conditions on the perturbation function f and on the weight function ρ.
(HC) f : R× Ω× R −→ R is a Carathéodory’s function

f(λ, x, t) = o(|t|p−1) when t→ 0,

uniformly almost everywhere for x ∈ Ω and uniformly with respect to λ in bounded interval R.
(GC) f verifies the growth condition.

∃q ∈ (p, p◦)

for which

lim
|t|→∞

f(λ, x, s)

|t|q−1
= 0;
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uniformly almost everywhere for x ∈ Ω and uniformly with respect to λ in bounded subset of R.
Throughout the function ρ : Γ → R is viewed as an indefinite weight belonging to Lr(Γ) which may change sign,
with r = r(N, p) satisfying the conditions ρ may change sign, with r = r(N, p) verifying the conditions{

r > N−1
p−1 if 1 < p ≤ N

r ≥ 1 if N < p.
(2.4)

Moreover, we suppose that σ(Γ+
ρ ) 6= 0 with Γ+

ρ = {x ∈ Γ; ρ(x) > 0} to ensure the existence of sequence of infinity
positive eigenvalues for the problem (P0)− (E).

2.3. Variational setting. Consider the following operators for u and v in W 1,p(Ω):

A, G : W 1,p(Ω)→ (W 1,p(Ω))∗

and

F (λ, ·) : W 1,p(Ω)→ (W 1,p(Ω))∗

defined by

〈Au, v〉 =

∫
Ω

|∇u|p−2∇u∇vdx+

∫
Ω

|u|p−2uvdx

〈Gu, v〉 =

∫
Γ

ρ(x)|u|p−2uvdσ

〈F (λ, u), v〉 =

∫
Ω

f(λ, x, u)vdx.

Here F (λ, ·) is the Nemytskii operator generated by f through F (λ, u)(x) = f(λ, x, u(x)).

Multiplying both sides of (Pf ) by v ∈W 1,p and integrating over Ω, we get∫
Ω

div(|∇u|p−2∇u)v dx =

∫
Ω

|u|p−2uvdx+

∫
Ω

f(λ, x, u)vdx. (2.5)

Inserting (2.5) into (2.2), we obtain∫
Γ

(
|∇u|p−2v∇u.ν

)
dσ =

∫
Ω

|∇u|p−2∇u∇v dx+

∫
Ω

|u|p−2uvdx+

∫
Ω

f(λ, x, u)vdx. (2.6)

Finally, (2.3) and (2.6) state the meaning of a solution of (Pf )− (E). That is,∫
Ω

|∇u|p−2∇u∇v dx+

∫
Ω

|u|p−2uvdx+

∫
Ω

f(λ, x, u)vdx = λ

∫
Γ

ρ|u|p−2uv dσ. (2.7)

It is worth that the operator A is not equal to
(
−∆p + | · |p−2·

)
except if boundary conditions (Neumann or Dirichlet)

are homogeneous.

Definition 2.1. A solution of (Pf )− (E) is a pair (λ, u) in R×W 1,p(Ω) such that∫
Ω

|∇u|p−2∇u∇v dx+

∫
Ω

|u|p−2uvdx = λ

∫
Γ

ρ|u|p−2uvdσ +

∫
Ω

f(λ, x, u)vdx, (2.8)

holds for every v ∈W 1,p(Ω).

Observe that (2.8) turns to say that u is a critical point of the functional

1

p
‖u‖p1,p −

λ

p

∫
Γ

ρ|u|pdσ −
∫

Ω

f(λ, x, u) dx.

Remark 2.1. (i) In view of (2.8) u is a solution of (Pf )− (E), if and only if

Au− λGu− F (λ, u) = 0 in (W 1,p(Ω))∗ (2.9)

(ii) A is odd and (p− 1)−homogenuous.
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3. First results

now, we regroup some preliminary results related to the duality mappings involving the operator A. We show
also the compactness of both other operators G and F (λ, ·) in order to be able to state the appropriate topological
degree for the operator stated in (2.9). These results form the heart of the proof of our aim result formulated by
Theorem 4.1.

3.1. On the mapping of duality on W 1,p(Ω). The notion of the duality mapping was introduced by [6] and used
by [8]. In order to state the next result, let us recall that the gauge function ϕ : [0,∞)→ [0,∞) with ϕ(t) := tp−1,
is continuous, strictly increasing with ϕ(0) = 0, lim

t→∞
ϕ(t) =∞ and normalized because ϕ(1) = 1.

Lemma 3.1. A is the duality mapping on (W 1,p(Ω), ‖.‖1,p) associated with tp−1.

Proof. See [13].

Corollary 3.1. The operator A is bijective strongly continuous from W 1,p(Ω) onto (W 1,p(Ω))∗. Furthermore, its

inverse is the duality mapping of (W 1,p(Ω))∗ onto W 1,p(Ω) associated to ϕ−1 defined by ϕ−1(t) = tp
′−1.

Proof. See [13].

Definition 3.1. We say that T satisfies the condition (S+), if for any sequence {un} converging weakly to a certain
u in X and lim sup

n→∞
〈Tun, un − u〉 ≤ 0, then un → u in X.

Lemma 3.2. The following assertions

(a) A is hemicontinuous.
(b)

〈Au−Av, u− v〉 > 0, ∀u 6= v.

(c) A is bounded and coercive.
(d) A ∈ (S+).

hold.

Proof. See [12] and [13].

3.2. Compactness result.

Lemma 3.3. Under the assumptions on the weight ρ, the operator G is well defined, compact, odd and (p − 1)-
homogeneous from W 1,p(Ω) to (W 1,p(Ω))∗.

Proof. In order to establish the definition and the compactness of G, we split the proof into two steps with three
cases for each one with respect to values of exponents r and p linked by (1.1).
Step 1: Definition of G.
Case 1: 1 < p < N and r > N−1

p−1 . Let u, v ∈W 1,p(Ω). Applying the Hölder’s inequality, we obtain∣∣∣∣∫
Γ

ρ(x)|u(x)|p−2u(x)v(x) dσ

∣∣∣∣ ≤ ‖ρ‖r,Γ ≤ ‖ρ‖r,Γ‖u‖p−1
s,Γ ‖v‖p∗,Γ, (3.1)

where
p− 1

s
+

1

p∗
+

1

r
= 1.

Thus
p− 1

s
> 1− p− 1

N − 1
− 1

p∗
=
p− 1

p∗
.

Such inequality is true if we take

max(1, p− 1) < s < p∗. (3.2)
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Then by applying trace embeddings W 1,p(Ω) ↪→ Ls(Γ) and W 1,p(Ω) ↪→ Lp
∗
(Γ), there is a constant C = C(Ω, p,N) >

0 so that (3.1) implies ∣∣∣∣∫
Γ

ρ(x)|u(x)|p−2u(x)v(x) dσ

∣∣∣∣ ≤ C‖ρ‖r,Γ‖u‖p−1
1,p ‖v‖1,p. (3.3)

This ensures the well definition of G.
Case 2: p = N and 1 < r. Thus r′ is finite and Nr′ < N∗ = ∞, and W 1,N (Ω) ↪→ LNr

′
(Γ). Moreover we can check

that
1

Nr′
+
p− 1

Nr′
+

1

r
= 1. (3.4)

Then Hölder’s inequality gives

|
∫

Γ

ρ(x)|u(x)|N−2u(x)v(x) dσ| ≤ ‖ρ‖r,Γ‖u‖N−1
Nr′,Γ‖v‖Nr′,Γ, (3.5)

∀u, v ∈W 1,N (Ω). Thus ∣∣∣∣∫
Γ

ρ(x)|u(x)|N−2u(x)v(x) dσ

∣∣∣∣ ≤ C‖ρ‖r,Γ‖u‖N−1
1,N ‖v‖1,N . (3.6)

Here C = C(Ω, N) > 0, where we used the Sobolev trace embedding W 1,N (Ω) ↪→ LNr
′
(Γ). Hence we deduce the

well definition of G in this case.
Case 3: p > N and 1 ≤ r. Here p∗ =∞ and then

W 1,p(Ω) ↪→ L∞(Γ).

Thus ∀u, v ∈W 1,p(Ω) ∣∣∣∣∫
Γ

ρ(x)|u(x)|p−2u(x)v(x) dσ

∣∣∣∣ <∞. (3.7)

Therefore. G is well defined.
Step 2: The compactness of G. Consider a sequence {un} ⊂W 1,p(Ω) such that un ⇀ u weakly in W 1,p(Ω) for
some function u ∈W 1,p(Ω). Let us prove that Gun → Gu in (W 1,p(Ω))∗. That is,

‖Gun −Gu‖∗ → 0, as n→∞.

In other words, we have to show that

sup

∣∣∣∣∫
Γ

ρ
[
|un|p−2un − |u|p−2u

]
v dσ

∣∣∣∣→ 0, as n→∞.

Here the supremum is taken over all v in W 1,p(Ω) with ‖v‖1,p ≤ 1).
Like in step 1, we have to consider three cases.
Case 1: 1 < p < N and r > N−1

p−1 . Let s ∈ (max(1, p− 1), p∗) as in (3.2). Thus from (2.5), by replacing (|u|p−2u) by

the difference (|un|p−2un − |u|p−2u) in both sides, we obtain

‖Gun −Gu‖∗ ≤ C ‖ρ‖r,Γ
∥∥|un|p−2un − |u|p−2u

∥∥
s
p−1 ,Γ

.

Here C is given by the Sobolev trace injection

W 1,p(Ω) ↪→ Lp
∗
(Γ).

Now, the continuity of the Nemytskii’s operator u 7→ |u|p−2u from Ls(Γ) into L
s
p−1 (Γ), the fact that un ↪→ u weakly

in W 1,p(Ω), and the compactness of the embedding W 1,p(Ω) into Ls(Γ) (because s < p∗) all combined ensure that
|un|p−2un converges strongly to |u|p−2u when n→∞. This achieves the proof the first case.
Case 2: p = N and r > 1. Thus there is C = C(Ω, N) a positive constant such that (3.5) implies

‖Gun −Gu‖∗ ≤ C ‖ρ‖r,Γ
∥∥|un|N−2un − |u|N−2u

∥∥N−1

Nr′,Γ
. (3.8)
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From the continuity of u 7→ |u|N−2u from LNr
′
(Γ) into LN

′
(Γ) and from the compactness of the embedding W 1,N (Ω)

into LNr
′
(Γ), we deduce the desired result.

Case 3: p > N and r ≥ 1. In this case p∗ =∞ and

W 1,p(Ω) ↪→ C(Ω) ∩ L∞(Ω). (3.9)

Because Ω is regular bounded domain, we deduce from (3.9) that the embedding

W 1,p(Ω) ↪→ L∞(Γ) (3.10)

is compact.
By a simple calculation we conclude via (3.5) and the embedding (3.10) that

‖Gun −Gu‖∗ ≤ C ‖ρ‖1,Γ sup
x∈Γ

∣∣|un|p−2un − |u|p−2u
∣∣ . (3.11)

Now since Lr(Γ) ↪→ L1(Γ) and taking into account the compactness of the embedding (3.10), we obtain from (3.11)
that

sup
x∈Γ

∣∣|un|p−2un − |u|p−2u
∣∣→ 0, as n→∞.

Hence G is compact also in this case.
This achieves the proof of the lemma since G is obviously odd and (p− 1)− homogeneous.

Lemma 3.4. ∀λ ∈ R, F (λ, .) is compact, F (λ, 0) = 0 and

lim
‖u‖1,p→0

F (λ, u)

‖u‖p−1
1,p

= 0 in (W 1,p(Ω))∗. (3.12)

Proof. First, it is clear that F (λ, 0) = 0,∀λ ∈ R.
Second, note that p < q < p◦ and the injection W 1,p(Ω) ↪→ Lq(Ω) is compact. Thus Lq

′
(Ω) ↪→ (W 1,p(Ω))∗.

We conclude that F (λ, .) is compact operator acting from W 1,p(Ω) into (W 1,p(Ω))∗ unless to prove that F (λ, .)

maps from W 1,p(Ω) into Lq
′
(Ω), is well defined and is continuous. Indeed, both conditions (HC) and (GC) ensure

that ∀ε > 0, there exist two positive reel δ = δ(ε) and M = M(δ) such that for almost everywhere x ∈ Ω, we get
the inequalities:

|f(λ, x, t)| ≤ ε|t|p−1 for |t| ≤ δ (3.13)

and

|f(λ, x, t)| ≤M |t|q−1 for |t| ≥ δ. (3.14)

These inequalities are justified by combining both limits in conditions (HC) and (GC) respectively. Let us now
prove that F (λ, .) is well defined. Indeed, using (3.13) and (3.14) and integrating over Ω, we deduce∫

Ω

|f(λ, x, u(x))|q
′
dx ≤

∫
Ω−ε

|f(λ, x, u(x))|q
′
dx+

∫
Ω+
ε

|f(λ, x, u(x))|q
′
dx, (3.15)

where Ω−ε := {x ∈ Ω, |u(x)| ≤ δ} and Ω+
ε := {x ∈ Ω, |u(x)| ≥ δ}. Thus∫

Ω

|f(λ, x, u(x))|q
′
dx ≤ εq

′
δ(p−1)q′ |Ω|+Mq′

∫
Ω

|u|q dx. (3.16)

That is, ∫
Ω

|F (λ, u)|q
′
dx ≤ εq

′
δ(p−1)q′ |Ω|+Mq′

∫
Ω

|u|q dx. (3.17)

From this and the fact that W 1,p(Ω) ↪→ Lq(Ω) we deduce that∫
Ω

|F (λ, u)|q
′
dx <∞.
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Then we conclude the well definition of F (λ, .). Consequently it is compact.

Since F (λ, .) acts from W 1,p(Ω) into Lq
′
(Ω), we claim now that the limit (3.12) holds in the Lebesque space Lq

′
(Ω).

Let us rewrite the right side of (3.12) as∣∣∣∣∣F (λ, u)

‖u‖p−1
1,p

∣∣∣∣∣
q′

=

∣∣∣∣F (λ, u)

|u|p−1

∣∣∣∣q′
∣∣∣∣∣ |u|p−1

‖u‖p−1
1,p

∣∣∣∣∣
q

. (3.18)

Let s > 1 to be fixed later. Applying Hölder’s inequality to (3.18), we obtain∥∥∥∥∥F (λ, u)

‖u‖p−1
1,p

∥∥∥∥∥
q′

q,Ω

≤

∥∥∥∥∥ |F (λ, u)|q′

|u|(p−1)q′

∥∥∥∥∥
s,Ω

∥∥∥∥∥ |u|q
′(p−1)

‖u‖q
′(p−1)

1,p

∥∥∥∥∥
s′,Ω

, (3.19)

where 1
s + 1

s′ = 1. To estimate both factors of the product occurring in the right side of the formula (3.19), we shall
use again the expressions (3.13) and (3.14) as in (3.15)∫

Ω

∣∣∣∣F (λ, u)

|u|p−1

∣∣∣∣q′s dx ≤ ∫
Ωε−

∣∣∣∣F (λ, u)

|u|p−1

∣∣∣∣q′s dx+

∫
Ωε+

∣∣∣∣F (λ, u)

|u|p−1

∣∣∣∣q′s dx. (3.20)

Thus ∫
Ω

∣∣∣∣F (λ, u(x))

|u|p−1

∣∣∣∣q′s dx ≤ ε ∫
Ω

1 dx+Mq′s

∫
Ω

|u|q
′s((q−p)) dx. (3.21)

That is, ∫
Ω

∣∣∣∣F (λ, u(x))

|u|p−1

∣∣∣∣q′s dx ≤ ε|Ω| dx+Mq′s

∫
Ω

|u|q
′s((q−p)) dx. (3.22)

The last estimate is true if the exponent s satisfies

sq′(q − p) < p◦. (3.23)

On the other hand, if we take that the exponent s satisfies also

s′q′(p− 1) < p◦, (3.24)

then the injection W 1,p(Ω) ↪→ Ls
′q′(p−1)(Ω) is compact and there exists a positive constant C = such that∥∥∥|u|q′(p−1)

∥∥∥
s′,Ω
≤ Cq

′(p−1)
∥∥∥|u|q′(p−1)

∥∥∥
1,p

. (3.25)

Consequently, (3.21), (3.22), (3.24) and the fact that the embedding W 1,p(Ω) ↪→ Ls
′q′(p−1)(Ω) ∩ Lsq′(q−p)(Ω) is

compact which implies
F (λ, u)

‖u‖p−1
1,p

= 0 in Lq
′
(Ω), as ‖u‖1,p → 0.

Which ensures the required limit (3.12) in W 1,p(Ω), provide that the exponent s verifies the system of the inequations
(3.23) and (3.24). For that, a simple calculation yields the following bounds

p◦

p◦ − q′(p− 1)
< s <

p◦

q′(q − p)
.

Such s exists because

p◦ − q′(p− 1) > q′(q − p)
which is equivalent to

p◦ > q′(q − 1).

That is,

p◦ > q

as it is already assumed. This ends the proof.
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3.3. Degree theory. Throughout, let X be a real reflexive Banach space and by X∗ stands for its dual linked by
the duality pairing 〈., .〉.

Definition 3.2. T : X → X∗ is said demicontinuous, if for all u ∈ X the functional v → 〈Tv, u〉 continuous, that
is, T is continuous from (X, strong)→ (X∗, weak).

Let T ∈ (S+) and demicontinuous. Thus we can define the topological degree Deg[T ;D; 0], for D ⊂ X is a
bounded and open set with Tu 6= 0,∀u ∈ ∂D. This degree has the same properties like the Leray-Schauder degree
[9].

We define critical points u0 ∈ X are such that Tu0 = 0. We say that a critical point u0 of T is isolated if there
is ε > 0 such that for every u ∈ Bε(u0), Tu 6= 0 if u 6= u0. We define the index of u0, as the limit

Ind(T, u0) = lim
ε→0+

Deg[T ;Bε(u0); 0].

Here Bε(u0) is the ball of radius ε and centered at u0.
In addition, suppose there is a functional of class C1Φ : X → R, Φ′ = T on X. Then we have the following

lemmas [20].

Lemma 3.5. if u0 is local minimum of Φ and it is an isolated critical point of T , then

Ind(T, u0) = 1.

Lemma 3.6. If 〈Tu, u〉 > 0,∀u ∈ X, ‖u‖X = R, then

Deg[T ;BR(0); 0] = 1.

Remark 3.1. Observe that every continuous map is also demicontinuous. If T ∈ (S+) then (T + K) ∈ (S+) for
any compact operator K : X −→ X∗.

Remark 3.2. λ is an eigenvalue of (P0)− (E) if and only if, there is u ∈W 1,p(Ω)\{0} solution of

Au− λGu = 0. (2.31)

Define for each λ a family of operators Tλ acting from W 1,p(Ω) to (W 1,p(Ω))∗ defined by

Tλu = Au− λGu− F (λ, u).

In view of lemmas 3.1, 3.2, 3.3, remarks 2.1 and 3.2, we conclude that for any small ε > 0, the degree

Deg[Tλ, Bε(0), 0] (3.32)

is well defined for any λ ∈ R such that Tλu 6= 0 for any ‖u‖1,p = ε.

4. Bifurcation Result

First, we note that for every λ ∈ R, the couple (λ, 0) is a solution of (Pf )− (E) (called trivial solution).

Definition 4.1. The pair P = (λ̄, 0) is called a bifurcation point of (Pf ) − (E) if any neighborhood of P in
R×W 1,p(Ω), contains a nontrivial solution of (Pf )− (E).

The next result states the characterization of bifurcation points.

Proposition 4.1. If (λ̄, 0) is a bifurcation point of problem (Pf )− (E), then λ̄ is an eigenvalue of (P0)− (E).
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Proof. Fix λ̄ ∈ R. Since (λ̄, 0) ∈ R×W 1,p(Ω) is a bifurcation of (Pf )−(E) there is {(λj , uj)}n ⊂ R×(W 1,p(Ω)\{0})
of nontrivial solutions of (Pf )− (E) such that

λj → λ̄ in R and uj → 0 in W 1,p(Ω). (4.1)

(λj , uj) are solutions of (2.4). Thus thanks to (p− 1)−homogenetity, we deduce

Avj − λjGvj =
F (λj , uj)

‖uj‖p−1
1,p

,

where vj =
uj

‖uj‖p−1
1,p

. Then the sequence {vj}j is bounded in W 1,p(Ω). Hence for a subsequence if necessary, vj ⇀ v

in W 1,p(Ω), for certain function v ∈ W 1,p(Ω). Now, using Remark 2.1, Lemma 3.3 and Lemma 3.4, we conclude
that

0 = Avj − λjGvj −
F (λj , uj)

‖uj‖p−1
1,p

→ Av − λ̄Gv. (4.2)

Consequently,

Av = λ̄Gv in (W 1,p(Ω))′. (4.3)

The fact that v ∈W 1,p(Ω) \ {0}, (4.3) establishes that λ̄ is an eigenvalue of (P0)− (E) in view of Remark 3.2. This
completes the proof.

In order to prove our main bifurcation result, we consider the variational characterization of λ1 setting by

λ1 = min

{
‖u‖p1,p∫

Γ
ρ(x)|u|pdσ ; u ∈W 1,p(Ω),

∫
Γ

ρ(x)|u|pdσ > 0

}
= min

{
‖u‖p1,p; u ∈W 1,p(Ω),

∫
Γ

ρ(x)|u|pdσ = 1

}
.

(4.4)

In addition, recall for our problem (P0)−(E), that λ1 is simple, isolated in the spectrum and it is the unique positive
eigenvalue associated to a nonnegative eigenfunction [11].

Consider the product space E := R×W 1,p(Ω) endowed with the norm

‖(λ, u)‖ :=
(
|λ|2 + ‖u‖21,p

) 1
2 .

Definition 4.2. The set

C = {(λ, u) ∈ E : (λ, u) solves (Pf )− (E), u 6= 0}
is said a continuum of nontrivial solutions of (Pf )− (E), if it is a connected subset in E.

Theorem 4.1. Under (HC) and (GC), the couple (λ1, 0) is a bifurcation point of (Pf )− (E). In addition, there

exists a continuum E of nontrivial solutions of (Pf )− (E) such that (λ1, 0) ∈ C and C is either unbounded or there

exists λ̄ 6= λ1, an eigenvalue of (Po)− (E), with (λ̄, 0) ∈ C.

Proof. We shall employ the classical global bifurcation stated in Theorem 1.3 of [27] and a variation of the technique
of ([17], Th. 3.2). So, we may conclude that

Deg[A− λG;Bε(0), 0] (4.5)

leaps from −1 to 1 when λ is near to the value of λ1. This is the key point of the proof. Since λ1 is isolated in the
spectrum, we can find for each λ near to λ1, δ > 0 such that the intersection of the interval (λ1 − δ, λ1 + δ) with
spectrum of (P0)− (E) is empty. Thanks to (3.4), Lemma 3.6 implies that for λ on the left of λ1

Deg[A− λG;Bε(0), 0] = 1, (4.6)

Now, we need to compute the value of (4.5) for λ on the right of λ1. Let us construct a function h : R −→ R by

h(t) =

{
0 if t ≤ 1
a(t− 2) if t ≥ 3,
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with δ
λ1
< a and so that h > 0 and h′′ > 0 on the interval (1, 3). Consider for each fixed λ the functional

Φλ(u) = 1
p‖u‖

p
1,p − λ

p

∫
Γ
ρ(x)|u|pdσ + h( 1

p‖u‖
p
1,p)

= 1
p 〈Au, u〉 −

λ
p 〈Gu, u〉+ h( 1

p‖u‖
p
1,p).

Thus Φλ is of class C1. We can also show that a critical point u0 ∈W 1,p(Ω) of Φ′λ is a solution of

Au0 −
λ

1 + h′( 1
p‖u‖

p
1,p)

Gu0 = 0.

On the other hand, because λ ∈ (λ1, λ1 + δ) and λ1 is the first eigenvalue of (P0) − (E), we may have nontrivial
critical points of Φλ only if

h′(
1

p
‖u‖p1,p) =

λ

λ1
− 1. (4.7)

Thanks to the definition of h, we deduce that 1
p‖u‖

p
1,p ∈ (1, 3). Since λ1 is simple, we deduce that u0 is collinear

to u1 with constant of proportionality m belonging to the interval (p
1
p , (3p)

1
p ). Here u1 is the positive and nor-

malized eigenfunction associated to λ1. Then, for λ ∈ (λ1, λ1 + δ), Φ′λ has precisely three isolated critical points
−mu1, 0, mu1, for some positive constant m.
To achieve the proof we claim the following assertions:
Claim 1: Φλ is weakly lower semi-continuous.
Claime 2: Φλ is coercive, that is,

lim
‖u‖1,p→+∞

Φλ(u) =∞.

Indeed, in order to prove Claim 1, we process as follows. Lemma 3.3 implies

〈Gun, un〉 −→ 〈Gu, u〉. (4.8)

Now, since the norm is weak lower semicontinuous, we have

‖u‖1,p = lim
n→+∞

‖un‖1,p. (4.9)

Therefore, since h is increasing in the interval (3, ∞), (4.8) and (4.9) lead to

lim
n→∞

Φλ(un) ≥ Φλ(u).

To prove the Claim 2, we argue as follows. Due to (4.4), we can evaluate Φλ(u). In fact,

Φλ(u) = 1
p 〈Au, u〉 −

λ1

p 〈Gu, u〉+ λ1−λ
p 〈Gu, u〉+ h( 1

p‖u‖
p
1,p)

≥ λ1−λ
p 〈Gu, u〉+ h( 1

p‖u‖
p
1,p).

Thus, for ‖u‖1,p being sufficiently large, we obtain via the definition of the function h that

Φλ(u) ≥ λ1−λ
p 〈Gu, u〉+ 1

p‖u‖
p
1,p

≥ λ1−λ
p 〈Gu, u〉+ a( 1

p‖u‖
p
1,p − 2).

Hence, due to the fact that λ1 < λ, we obtain

Φλ(u) ≥ λ1 − λ
pλ1

‖u‖p1,p + a(
1

p
‖u‖p1,p − 2).

Consequently,

Φλ(u) ≥ 1

p
(
λ1 − λ
λ1

+ a)‖u‖p1,p − 2a).

By the choice of a, we can verify easily

λ1 − λ
λ1

+ a >
λ1 − λ
λ1

+
δ

λ1
> 0.
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Therefore, Φλ(u)→∞, as ‖u‖1,p →∞. Then the claim 2 is proved.
Now, Φλ has precisely two points at which the minimum of Φλ, because it is even. Moreover, this minimum is
achieved at : −mu1 and mu1 for vertain m ∈ (0,∞). However origin 0 is of ”saddle” type isolated critical point.
Now, Lemma 3.5 gives

Ind(Φ′λ,−mu1) = Ind(Φ′λ, mu1) = 1 (4.10)

and
〈Φ′λu, u〉 > 0,

whenever u ∈ ∂BR(0), with R is large enough. In fact, we may check that

〈Au, u〉 > 3 and 〈Au, u〉 > λ〈Gu, u〉.
Then

〈Φ′λ(u), u〉 ≥ (λ1 − λ)〈Gu, u〉+ a〈Au, u〉

≥ −δ
λ1
〈Au, u〉+ a〈Au, u〉

≥ (a− δ
λ1

)‖u‖p1,p.
This implies that 〈Φ′λ(u), u〉 → ∞, as ‖u‖1,p →∞ by definition of h.
We deduce from Lemma 3.6 that

Deg[Φ′λ;BR(0), 0] = 1. (4.11)

We consider the radius R so that αu1 ∈ ∂BR(0).
Since the degree is additive and taking in account (4.10) and (4.11), we conclude that

Deg[L− λG;Bε(0), 0] = −1. (4.12)

Also we have
〈Au, u〉 − λ〈Gu, u〉 → 0,

whenever ‖u‖1,p → 0. Therefore we get

Deg(Au− λG,Bε(0), 0) = Ind(Φ′λ, 0), (4.13)

for ε > 0 sufficiently small enough. Finally (2.18) and the invariance principle of the degree permit us to deduce
that

Deg(Tλ, Bε(0), 0) = Deg(Au− λG,Bε(0), 0),

for any λ near to λ1 but λ 6= λ1. Finally, (4.6) and (4.10)− (4.13) imply that

Deg(Tλ, Bε(0), 0) = 1 for λ ∈ (λ1 − δ, λ1) and

Deg(Tλ, Bε(0), 0) = −1 for λ ∈ (λ1, λ1 + δ).

for ε > 0 sufficiently small. The ”jump” of the degree is stated and the proof of the theorem is achieved.
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