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On the characterization of Jensen m-convex polynomials

Teodoro Lara1,a, Nelson Merentes2,b, Roy Quintero3,c, Edgar Rosales1,d

Abstract. The main objective of this research is to characterize all the real polynomial functions of degree
less than the fourth which are Jensen m-convex on the set of non-negative real numbers. In the first section,
it is established for that class of functions what conditions must satisfy a particular polynomial in order to be
starshaped on the same set. Finally, both kinds of results are combined in order to find examples of either
Jensen m-convex functions which are not starshaped or viceversa.
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1. Introduction

The study about the generalization of the classical concept of convexity of real functions began from its origin
itself [2, 3, 9, 10]. In [11, p. 2] G. Toader reminds us that, according to T. Popoviciu [9], the class of convex
functions was introduced by O. Stolz in 1893 while working on the study of derivatives, by considering the relation
f(x− h)− 2f(x) + f(x + h) ≥ 0 or equivalently

f(x) + f(y)

2
− f

(
x + y

2

)
≥ 0. (1)
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Jensen, himself, was the first who studied them formally. The relation (1) is probably the first generalization regard-
ing to convex functions and nowadays a function f satisfying it is called midconvex. Another type of generalized
convexity for real functions is the well known m-convexity introduced in [11, Definition 0.3], which has been subse-
quently studied by the same author and colleagues in [8, 12, 13, 15] among others. An even more general kind of
convexity is considered in [14], but limited to continuous functions, the Jensen m-convexity. In [5] some interesting
results were found regarding this class of functions but restricted to be defined on intervals of the form [0, b] where
b is any positive real number, for instance it was proved that, for m1 6= m2, the corresponding classes of Jensen
m1-convex functions and Jensen m2-convex functions are different. Other results, related to this type of convexity
or to some variations of it, can be found in [4, 6, 7].

Following a similar orientation to that presented in [15], we are headed to characterize the low-grade polynomials
that are Jensen m-convex as the main objective of this research.

Let us start by recalling this couple of definitions for real functions whose domains contain the set R≥0 = [0,+∞).
It is customary to have domains that are convex sets or maybe something more general like m-convex sets. First,
we establish the condition that must satisfy a function to be called starshaped. Then, we do the same to the term
Jensen m-convex for m ∈ (0, 1) which is a type of function much less known.

Definition 1. ([8, 12, 15]) A function f : D → R (D ⊃ [0,+∞)) is said to be starshaped on [0,+∞) if for any
x ∈ [0,+∞) and t ∈ [0, 1]

f(tx) ≤ tf(x). (2)

Definition 2. ([5, 14]) A function f : D → R (D ⊃ [0,+∞)) is said to be Jensen m-convex on [0,+∞) if for any
x, y ∈ [0,+∞)

f

(
x + y

cm

)
≤ f(x) + f(y)

cm
(3)

where cm = 1 +
1

m
, m ∈ (0, 1).

Remark 3. In [5] the functional inequality (3) was restricted to all x and y in [0, b] in order to define a Jensen
m-convex function on [0, b] and the class of such functions was denoted by Jm[b].

From now on, D will be the set of all real numbers (i.e., D = R) and the set of all functions f : R→ R that are
starshaped (Jensen m-convex) on [0,+∞) will be denoted by the symbol SS[+∞) (Jm[+∞)), respectively.

In what follows all the functions considered are real polynomials of the form either fi(x) = aix
i + ai−1x

i−1 +
· · · + a1x + a0 (ai 6= 0) for i = 0, 1, 2, 3 or the zero polynomial 0 (i.e., 0 (x) = 0 for all x ∈ R). It is evident that
0 ∈ SS[+∞) ∩ Jm[+∞) for all m ∈ (0, 1).

2. Starshaped polynomial functions of low degree

In [15, Lemma 2.1] all the real polynomial functions f of low degree that are starshaped on [0,+∞) and f(0) = 0
were characterized. In this short section we will extend that result to include those polynomials taking a nonzero
value at zero but we will not include polynomials of degree four.

Well, let us begin by establishing the first result for i = 0, 1, 2.

Theorem 4. The polynomial functions f0, f1 and f2 with a0 6= 0 are starshaped on [0,+∞) if and only if their
coefficients satisfy the following conditions:

(1) For i = 0, a0 < 0.
(2) For i = 1, a1 6= 0, and a0 < 0.
(3) For i = 2, a2 > 0, and a0 < 0.

Proof. The condition a0 < 0 comes out from the following well known general fact: If f ∈ SS[+∞) then f(0) ≤ 0.
Then for i = 0, we are done. For i = 1, the inequality (2) becomes equivalent to (1 − t)a0 ≤ 0 for all t ∈ [0, 1], so
a1 must be any nonzero real number. For i = 2, the same inequality equivalently turns into (1− t)(a2tx

2 − a0) ≥ 0
for all x ≥ 0 and for all t ∈ [0, 1], so a2 must be any positive real number.
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For the remaining case, we proceed in a different way. Given f3 we define a new function hf3 as follows:

hf3(x) := xf ′3(x)− f3(x) for all x ∈ R.

It is not difficult to check that f3 ∈ SS[+∞) if and only if hf3 is non-negative on [0,+∞). We will do an analysis
of hf3 by means of the First Derivative Test (FDT) to find conditions on the coefficients of f3 to determine when
hf3(x) ≥ 0 for all x ∈ [0,+∞).

Theorem 5. The polynomial function f3 ∈ SS[+∞) if and only if its coefficients satisfy any of the following
conditions:

(1) a3 > 0, a2 ≥ 0, and a0 < 0.
(2) a3 > 0, a2 < 0, a0 < 0, and hf3(− a2

3a3
) ≥ 0.

Proof. Since f3 must be starshaped the first condition is a0 = f3(0) < 0. By doing some simple calculations we get
that

hf3(x) := xf ′3(x)− f3(x) = 2a3x
3 + a2x

2 − a0.

Since hf3 must be non-negative on [0,+∞), it must also satisfy the following formula limx→+∞ hf3(x) = +∞, so
a3 > 0 is the second condition.

Let us continue the study of hf3 through FDT. The first thing to do is the calculation of the derivative of hf3 to
determine its critical (only stationary) points. Well,

h′f3(x) = 6a3x
2 + 2a2x = 6a3x

(
x +

a2
3a3

)
.

Then, the possible critical points are 0 and − a2

3a3
.

As all the upcoming calculations are very simple we will make an account of all the results on the next table.
Before doing that, we need to introduce some notation:

A = (− a2

3a3
, 0), B = (−∞,− a2

3a3
) ∪ (0,+∞), C = (−∞, 0) ∪ (0,+∞),

D = (0,− a2

3a3
), and E = (−∞, 0) ∪ (− a2

3a3
,+∞).

After checking all the results given in Table 1, we can resume them into the two cases shown in the statement of
the theorem. Therefore, the proof has been completed.

Remark 6. We estimate appropriate to clarify the identifier of each column of Table 1:

(1) The first three columns give conditions for the coefficients a3, a2, and a0.
(2) The fourth contains the critical points of hf3 .
(3) The fifth (sixth) column shows the region where hf3 decreases (increases), respectively.
(4) The seventh (eighth) column shows the points where hf3 has minima (maxima) extrema, respectively.
(5) The ninth shows the minimum of hf3 on the interval [0,+∞).
(6) The last column gives extra conditions (if any) for making the original function f3 starshaped on [0,+∞).

a3 a2 a0 c. p. d. i. min max min on R≥0 f3 ∈ SS[+∞).

+ + − − a2

3a3
, 0 A B 0 − a2

3a3
−a0 X

+ 0 − 0 C −a0 X

+ − − 0,− a2

3a3
D E − a2

3a3
0 hf3(− a2

3a3
) hf3(− a2

3a3
) ≥ 0

Table 1. Conditions imposed on the coefficients of f3.

Remark 7. The next two observations are important:

(1) 0 can not be root of hf3 .
(2) a1 can be any real number. The same affirmation counts for hf2 .
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Example 1. The polynomial function f(x) = (x− 1)3 is starshaped on [0,+∞).

Well, in this case we have a3 = 1 > 0, a2 = −3 < 0, a0 = −1 < 0 and hf

(
− a2

3a3

)
= hf (1) = 0. By part 2 from

Theorem 5 f ∈ SS[+∞).

3. Jensen m-convex polynomial functions of low degree

Before classifying all the real polynomial functions of degree less than the fourth that are Jensen m-convex on
[0,+∞) we recall some elementary properties assuming that m ∈ (0, 1) [5].

(1) cm > 2.
(2) x2 − 2mxy + y2 ≥ 0 for all x, y ∈ [0,+∞).
(3) If f ∈ Jm[+∞) then f(0) ≤ 0.

Well, here it is our first result on Jensen m-convex real polynomial functions.

Theorem 8. The polynomial functions f0, f1 and f2 are Jensen m-convex on [0,+∞) if and only if their coefficients
satisfy the following conditions:

(1) For i = 0, a0 ≤ 0.
(2) For i = 1, a1 6= 0, and a0 ≤ 0.
(3) For i = 2, a2 > 0, and a0 ≤ 0.

Proof. The condition a0 ≤ 0 is true for i = 0, 1, 2 because of property 3 above indicated. Then for i = 0, we are
done. For i = 1, the inequality (3) becomes equivalent to (1− 2

cm
)a0 ≤ 0, so a1 must be any nonzero real number.

For i = 2, the same inequality equivalently turns into a2(x2 − 2mxy + y2) ≥ −a0(m+ 1)(cm − 2) for all x, y ≥ 0, so
a2 must be any positive real number.

For case i = 3, the first condition to be taken from now is f3(0) = a0 ≤ 0. Then, we proceed separately as we did
in the previous section. Likewise, we appeal to a procedure other than the simple application of the definition. In
this situation we employ the auxiliary real function Jf3 of two real variables restricted to the first closed quadrant
of the plane (i.e., (R≥0)2) defined as follows:

Jf3 : R≥0 × R≥0 −→ R

(x, y) 7−→ f3(x) + f3(y)

cm
− f3

(
x + y

cm

)
.

Assuming that m ∈ (0, 1) is fixed we will apply the Second-Partials Test (SPT) [1, p. 943] in order to find the
absolute minimum of the function Jf3 in the interior of R = [0,+∞) × [0,+∞). We need the first-order partial
derivatives of Jf3 

∂Jf3
∂x

(x, y) =
1

cm

[
f ′3(x)− f ′3

(
x + y

cm

)]
∂Jf3
∂y

(x, y) =
1

cm

[
f ′3(y)− f ′3

(
x + y

cm

)]
.

(4)

By solving the appropriate system to find the critical points we get

f ′3(x) = f ′3(y)

which reduces to:
(3a3(x + y) + 2a2)(x− y) = 0. (5)

Finally, we have to study the behavior of Jf3 on the boundary of R, ∂R. It means considering the one variable
functions h3 and v3 defined by h3(x) := Jf3(x, 0) for all x ≥ 0 and v3(y) := Jf3(0, y) for all y ≥ 0. The second
condition, a3 > 0, comes out from the following simple fact:

lim
x→+∞

h3(x) =

{
+∞ if a3 > 0

−∞ if a3 < 0.
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Now, we present a lemma in which we give conditions on the coefficients of f3 that guarantee Jf3 has an absolute
minimum on R.

Lemma 9. The function Jf3 has an absolute minimum on the unbounded closed region R which is characterized by

min
(x,y)∈R

{Jf3(x, y)} =



(1−m)(8a32m(1 + m)− 27a23a0(1 + 3m)2)

27a23(1 + m)(1 + 3m)2

4a32m(1 + m)− 27a23a0(1−m)(1 + 2m)2

27a23(1 + m)(1 + 2m)2

−a0(1−m)

1 + m

(6)

if and only if the coefficients of f3 satisfy the following conditions, respectively:

(1) a3 > 0, a2 < 0, a0 ≤ 0, and m ∈ (0,m1] where m1 =
√
33−1
16 ≈ 0.296535.

(2) a3 > 0, a2 < 0, a0 ≤ 0, and m ∈ (m1, 1).
(3) a3 > 0, a2 = 0, and a0 ≤ 0.

Proof. Equation (3.2) produces two kinds of critical points. Two on the line y = x and two more points on the line
y = −x− 2a2

3a3
. After many calculations performed we get the following stationary points:

O = (0, 0) ∈ ∂R; P1 =

(
− 2a2(1 + m)

3a3(1 + 3m)
,− 2a2(1 + m)

3a3(1 + 3m)

)
and

P2 =

(
− 2a2m

3a3(1 + m)
,− 2a2

3a3(1 + m)

)
; P3 =

(
− 2a2

3a3(1 + m)
,− 2a2m

3a3(1 + m)

)
under the condition a2 < 0 (because a3 > 0) to ensure their location in the interior of R.

In order to decide the nature of each point, it is necessary to find the second-order partial derivatives of Jf3 .
From (4) 

∂2Jf3
∂x2

(x, y) =
1

cm

[
f ′′3 (x)− 1

cm
f ′′3

(
x + y

cm

)]
∂2Jf3
∂y2

(x, y) =
1

cm

[
f ′′3 (y)− 1

cm
f ′′3

(
x + y

cm

)]
∂2Jf3
∂x∂y

(x, y) = − 1

c2m
f ′′3

(
x + y

cm

)
,

which yields Table 2 (O will be analyzed later on), where A =
∂2Jf3
∂x2

(x0, y0),

B =
∂2Jf3
∂y2

(x0, y0), C =
∂2Jf3
∂x∂y

(x0, y0), Hm =
2a2m(1−m)

1 + m
< 0, and

Km = (1 + m)(1 + 3m) > 0.
By using SPT on each critical point in the interior of R, we get that Jf3 has a relative minimum at P1 and the

other two points are saddle points. So the minimum value attained by Jf3 in the interior of R is

Jf3(P1) =
(1−m)(8a32m(1 + m)− 27a23a0(1 + 3m)2)

27a23(1 + m)(1 + 3m)2
. (7)

Next step is finding the critical points of the restriction of Jf3 to ∂R. By doing so, we get the following two real
one-variable functions:
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(x0, y0) A B C D = AB − C2

P1 − (1 + 2m)Hm

Km
− (1 + 2m)Hm

Km
−mHm

Km

H2
m

Km

P2
Hm

(1 + m)2
− (1 + 2m)Hm

(1 + m)2
− mHm

(1 + m)2
− H2

m

(1 + m)2

P3 − (1 + 2m)Hm

(1 + m)2
Hm

(1 + m)2
− mHm

(1 + m)2
− H2

m

(1 + m)2

Table 2. Application of SPT.


h3(x) =

f3(x) + a0
cm

− f3

(
x

cm

)
, x ∈ [0,+∞)

v3(y) =
a0 + f3(y)

cm
− f3

(
y

cm

)
, y ∈ [0,+∞).

By employing basic calculus of one variable we obtain two critical points for h3 and two more for v3: x1 = 0,

x2 = − 2a2(1+m)
3a3(1+2m) and y1 = 0, y2 = − 2a2(1+m)

3a3(1+2m) , respectively. By calculating the second derivative of h3 and v3,

respectively, we get

h′′3(x1) =
2ma2

(1 + m)2
and h′′3(x2) = − 2ma2

(1 + m)2

and

v′′3 (y1) =
2ma2

(1 + m)2
and v′′3 (y2) = − 2ma2

(1 + m)2
.

By the Second Derivative Test:

(1) h3 has a relative maximum (minimum) at x1(x2), respectively.
(2) v3 has a relative maximum (minimum) at y1(y2), respectively.

So, we get three more points

O = (0, 0); Q1 =

(
− 2a2(1 + m)

3a3(1 + 2m)
, 0

)
; and Q2 =

(
0,− 2a2(1 + m)

3a3(1 + 2m)

)
and their images through Jf3 are:

Jf3(O) = −a0(1−m)

1 + m
≥ 0

and

Jf3(Q1) = Jf3(Q2) =
4a32m(1 + m)− 27a23a0(1−m)(1 + 2m)2

27a23(1 + m)(1 + 2m)2
. (8)

Since a2 is negative it is not hard to check the following inequality:

Jf3(O) ≥ Jf3(Q1). (9)

Therefore, by relations (7) and (9), the minimum of Jf3 on R = R≥0 × R≥0 is given by

min
(x,y)∈R

{Jf3(x, y)} = min{Jf3(P1), Jf3(Q1)}

It is also not very difficult to demonstrate algebraically (assuming m ∈ (0, 1)) that Jf3(P1) ≤ Jf3(Q1) iff 8m2+m−1 ≤
0 iff m ∈ (0,m1] where m1 =

√
33−1
16 ≈ 0.296535. So, the absolute minimum of Jf3 is either Jf3(P1) and it is attained

at the unique interior point P1 when m ∈ (0,m1] or Jf3(Q1) and it is attained at two points on the boundary, Q1

and Q2 (the first on the X axis and the second on the Y axis) when m ∈ (m1, 1).
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On the other hand, if a2 = 0 all the stationary points of Jf3 coincide with O (i.e., P1 = P2 = P3 = Q1 = Q2 =
(0, 0)) and this point will be the point where Jf3 attains its absolute minimum (a3 > 0). So, we have covered all
the possible cases indicated in the statement of the lemma. Therefore, the proof has been completed.

So far, we were able to find conditions on the coefficients of f3, which guarantee our auxiliary function Jf3 has
an absolute minimum on R. Now, we are headed to uncover additional conditions that make the function Jf3
non-negative or equivalently f3 to be a Jensen m-convex function on [0,+∞) that is one of the main objectives of
this research. At the same time, we could try to find the greatest value of m ∈ (0, 1) for which f3 ∈ Jm[+∞). Next
theorem resumes our findings, but first we need to define another real (piecewise) function, which we will denote by
g as follows:

g : (0, 1) −→ R

m 7−→


8m(1 + m)

27(1 + 3m)2
if m ∈ (0,m1]

4m(1 + m)

27(1−m)(1 + 2m)2
if m ∈ (m1, 1),

being m1 as before.

Theorem 10. The polynomial function f3 is Jensen m-convex on [0,+∞) if and only if its coefficients satisfy any
of the following conditions:

(1) a3 > 0, a2 < 0, a0 < 0, and a23a
−3
2 a0 ≥ g(m).

(2) a3 > 0, a2 = 0, and a0 ≤ 0.

Proof. By formula (6), we know that the minimum value of Jf3 will be non-negative for the first case if and only if
conditions given in part 1 from Lemma 9 are true excluding a0 = 0 (otherwise, the minimum value of Jf3 would be
always negative, according to equation (7)) and

8a32m(1 + m)− 27a23a0(1 + 3m)2 ≥ 0, (10)

and for the second case iff conditions shown in part 2 of the same lemma are true excluding a0 = 0 (otherwise, the
minimum value of Jf3 would be always negative, according to equation (8)) and

4a32m(1 + m)− 27a23a0(1−m)(1 + 2m)2 ≥ 0, (11)

and finally, for the last case no additional condition is necessary because

−a0(1−m)

1 + m
≥ 0.

Clearly, inequalities (10) and (11) are equivalent to the sole condition a23a
−3
2 a0 ≥ g(m). Therefore, the proof has

been completed.

The graph of the piecewise function g defined previously to Theorem 10 is shown in Figure 1. Each piece has
been distinguished with a color. Observe that for both cases of Theorem 10 and following ideas from [8, Definition
2], it makes sense to define

mf3 = sup{m ∈ (0, 1) : f3 ∈ Jm[+∞)}.
In fact, if we denote c = a23a

−3
2 a0 then mf3 will be obtained by solving the equation g(m) = c for m under the

conditions given in part 1 of Theorem 10, and will be 1 if the conditions given in its part 2 are satisfied. Observe
that the latter equation is solvable because the function g is an injective application from (0, 1) onto (0,+∞). So,
mf3 will be the unique root in (0, 1) of one of the next equations according to the case

(243c− 8)m2 + (162c− 8)m + 27c = 0 if a3 > 0, a2 < 0, a0 < 0, c ∈ (0, g(m1)] (12)

108cm3 + 4m2 + (4− 81c)m− 27c = 0 if a3 > 0, a2 < 0, a0 < 0, c ∈ (g(m1),+∞) (13)
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where g(m1) =
5
√

33− 27

54
≈ 0.0319039. Furthermore, as the corresponding discriminants from the quadratic

equation (12) and the cubic equation (13) are:

∆1 = 64(1− 27c) > 0

for all c ∈ (0, g(m1)] and

∆2 = 16(16− 1944c + 59049c2 − 1062882c3) < 0

for all c ∈ (g(m1),+∞), we can clear the value of mf3 as follows:

mf3 =



8− 162c−
√

∆1

486c− 16
if c ∈ (0, g(m1)]

− 1

81c
+ 3

√√
−∆2

C1
+ C2 +

C3

3

√√
−∆2

C1
+ C2

if c ∈ (g(m1),+∞),

where

C1 = 69984
√

3c2, C2 =
531441c3 − 19683c2 + 972c− 8

4251528c3
,

and

C3 =
6561c2 − 324c + 4

26244c2
.

Figure 1. Graph of g

4. Examples and Counterexamples

Let us start by fixing some additional notation. The set of all real polynomial functions of degree less than or
equal to i (i = 0, 1, 2, 3) and zero will be denoted as Pi[x] (i.e., Pi[x] = {0} ∪ {f ∈ R[x] : deg(f) ≤ i}).

Now observe that from Theorem 4, Theorem 8, and some comments given previously to [15, Lemma 2.1.] follows
the equality

Pi[x] ∩ SS[+∞) = Pi[x] ∩ Jm[+∞) (i = 0, 1, 2)

for all m ∈ (0, 1).
On the other hand, for case i = 3 with an m fixed we have neither

P3[x] ∩ Jm[+∞) ⊂ P3[x] ∩ SS[+∞)
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nor
P3[x] ∩ SS[+∞) ⊂ P3[x] ∩ Jm[+∞),

as the next two examples show.

Example 2. The function f(x) = 1
2x

3 − 4x2 − 2 ∈ Jmf
[+∞) − SS[+∞). Well, in this case we have a3 = 1

2 > 0,

a2 = −4 < 0, a0 = −2 < 0 and hf

(
− a2

3a3

)
= hf ( 8

3 ) = − 202
27 < 0. By part 2 from Theorem 5 f /∈ SS[+∞).

Besides, by taking c = a23a
−3
2 a0 = 1

128 = 0.0078125 ∈ (0, g(m1)] in equation 12 and solving for m we get

mf = −431+32
√
202

781 ≈ 0.0304807. So, f ∈ Jmf
[+∞).

Example 3. The function f(x) = x3 + x2 − 1 ∈ SS[+∞)− Jm[+∞) for all m ∈ (0, 1).
Well, in this case we have a3 = 1 > 0, a2 = 1 > 0, and a0 = −1 < 0. By part 1 from Theorem 5 f ∈ SS[+∞).
Besides, by Theorem 10 for all m ∈ (0, 1), f is not Jensen m-convex on [0,+∞).
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