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Infinitely Many Solutions of the Neumann
Problem for Elliptic systems in Anisotropic
Variable Exponent Sobolev Spaces

A.AHMED1,a, M.S.B.ELEMINE VALL1,b and A.TOUZANI1,c

Abstract. In this paper, we prove the existence of infinitely many solutions for the following
system 

∑N
i=1

∂
∂xi

ai

(
·, ∂u

∂xi

)
+ h(·)|u|p0(·)−2u = θ(·)f(u, v) in Ω∑N

i=1
∂

∂xi
bi

(
·, ∂v

∂xi

)
+ k(·)|v|p0(·)−2v = θ(·)g(u, v) in Ω∑N

i=1 ai

(
·, ∂u

∂xi

)
γi =

∑N
i=1 bi

(
·, ∂v

∂xi

)
γi = 0 on ∂Ω,

by applying a critical point variational principle obtained by Ricceri as a consequence of a more
general variational principle and the theory of the anisotropic variable exponent Sobolev spaces.
2010 Mathematics Subject Classification. 35K05 - 35K55.

Key words and phrases. Neumann elliptic problem; Gradient system; weak solutions; Varia-
tional principle; Anisotropic variable exponent Sobolev spaces..

1. Introduction

Let Ω ⊂ RN be an open bounded set with boundary ∂Ω of class C1, and let −→γ be the
outward unit normal to ∂Ω.

In these last years, the anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) have cap-
tured the attention of many researchers and a new operator has been introduced in the
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literature, namely

∆~p(x)u =
N∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi(x)−2 ∂u

∂xi

)
. (1)

It’s clear that this ~p(x)-Laplace operator is a generalization of the p(·)-Laplace operator.
For some existing results of strongly nonlinear elliptic equations in the anisotropic variable
exponent Sobolev spaces, see references [2, 10, 19].

In the present paper, we consider a problem involving a more general type of operator,
that is,

N∑
i=1

∂

∂xi
ai

(
x,
∂u

∂xi

)
, (2)

the applications ai : Ω × R −→ R are Carathédory functions satisfying some hypothesis
conditions for i=1,...,N (see Section 3). The operator defined above is of ~p(·)-Laplacian type

when we take ai(x, s) = |s|pi(x)−2s for all x ∈ Ω, s ∈ R and all i = 1, ..., N.
Notice that the general operator given by (2) can admit degenerate and singular points.

It is no surprising that there exist previous works treating problems with same operator, to
give some examples, we refer the reader to [8, 12, 13] where the authors were concerned with
Dirichlet problems. Our work is focused on a Neumann problem, we refer the reader to [1, 9].

In this paper, we are interested in the following problem

(P)


∑N

i=1
∂
∂xi
ai

(
·, ∂u∂xi

)
+ h(·)|u|p0(·)−2u = θ(·)f(u, v) in Ω∑N

i=1
∂
∂xi
bi

(
·, ∂v∂xi

)
+ k(·)|v|p0(·)−2v = θ(·)g(u, v) in Ω∑N

i=1 ai

(
·, ∂u∂xi

)
γi =

∑N
i=1 bi

(
·, ∂v∂xi

)
γi = 0 on ∂Ω.

More precisely we are interested to the existence of infinitely many weak solutions to such a
problem.

In the context of Dirichlet boundary conditions J. Vlin have studied the existence of non
trivial solutions of (P) in the isotropic variable exponent Sobolev space, see [18]. In the same
case M. Bendahmane and F. Mokhtari have studied in [5] the problem (P) in the isotropic
variable Sobolev space where the second term was a measure data. In the same framework,
D. S. Moschetto in [15] have studied the problem (P) in the particular case of homogeneous

Neumann condition and
∑N

i=1
∂
∂xi
ai

(
·, ∂u∂xi

)
= ∆~p(·)(u) and

∑N
i=1

∂
∂xi
bi

(
·, ∂v∂xi

)
= ∆~p(·)(v).

Even though the problem (P) has been studied by some other authors (see e.g. [3, 6, 7,
14, 17, 20]) the hypotheses we use in this paper are totally different and so are our results.

The aim of the present paper is to generalize the results of [1, 5, 15, 18] in the anisotropic
cases.

The main difficulties with this kind of problems are the framework of anisotropic Sobolev
spaces and the fact that we have Neumann boundary conditions that make some difficulties
in the application of theorem 1.1.

The following theorem plays an important role in this paper.

Theorem 1.1. (See [16], Theorem 2.5). Let X be a reflexive real Banach space, and let
Φ,Ψ : X → IR be two sequentially weakly lower semicontinuous and Gâteaux differentiable
functionals. Also, assume that Ψ is (strongly) continuous and satisfies lim‖u‖→+∞Ψ(u) =
+∞. For each ρ > infX Ψ, put
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ϕ(ρ) = inf
u∈Ψ−1((−∞,ρ))

Φ(u)− inf
v∈(Ψ−1((−∞,ρ)))

w Φ(v)

ρ−Ψ(u)
, (3)

where (Ψ−1((−∞, ρ)))
w

is the closure of Ψ−1((−∞, ρ)) in the weak topology. Furthermore, set

γ = lim inf
ρ→+∞

ϕ(ρ) (4)

and

δ = lim inf
ρ→(infX Ψ)+

ϕ(ρ). (5)

then, the following conclusions hold:
(a) For each ρ > infX Ψ and each t > ϕ(ρ), the functional Φ + tΨ has a critical point which
lies in Ψ−1((−∞, ρ)).
(b) If γ < +∞, then, for each t > γ, the following alternative holds: either Φ + tΨ has
a global minimum, that is, it exists a sequence {un} of critical points of Φ + tΨ such that
limn→∞Ψ(un) = +∞.
(c) If δ < +∞, then, for each t > δ, the following alternative holds: either there exists
a global minimum of Ψ which is a local minimum of Φ + tΨ, or there exists a sequence of
pairwise distinct critical points of Φ + tΨ which weakly converges to a global minimum of Ψ.

This paper is organized as follows: In Section 2, we present some preliminary knowledge
on the anisotropic Sobolev spaces with variable exponent. We introduce in Section 3 some
assumptions for which our problem has solutions. In Section 4, we prove the existence of
infinitely many weak solutions for our Neumann elliptic problem and we give a conclusion
and some perspectives.

2. Preliminaries

Let Ω be an open bounded subset of RN (N ≥ 1), we define

C+(Ω) =
{

measurable function z(·) : Ω 7−→ R such that 1 < z− ≤ z+ <∞
}
,

where

z− = ess inf
{
z(x) / x ∈ Ω

}
and z+ = ess sup

{
z(x) / x ∈ Ω

}
.

We define the Lebesgue space with variable exponent Lz(·)(Ω) as the set of all measurable
functions u : Ω 7−→ R for which the convex modular

ρz(·)(u) :=

∫
Ω
|u|z(x)dx,

is finite, then

‖u‖z(·) = inf
{
λ > 0 : ρz(·)(u/λ) ≤ 1

}
,

defines a norm in Lz(·)(Ω), called the Luxemburg norm.

The space (Lz(·)(Ω), ‖ · ‖z(·)) is a separable and reflexive Banach space. Moreover, the space

Lz(·)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lz
′(·)(Ω),
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where 1
z(x) + 1

z′(x) = 1.

Finally, we have the Hölder type inequality:∣∣∣∣∫
Ω
uv dx

∣∣∣∣ ≤ ( 1

z−
+

1

(z′)−

)
‖u‖z(·)‖v‖z′(·) (6)

for all u ∈ Lz(·)(Ω) and v ∈ Lz′(·)(Ω).
An important role in manipulating the generalized Lebesgue spaces is played by the modular
ρz(·) of the space Lz(·)(Ω), we have the following result.

Proposition 2.1. (See [11]). If u ∈ Lz(·)(Ω), then the following properties hold true:

(i): ‖u‖z(·) > 1⇒ ‖u‖z−z(·) < ρz(·)(u) < ‖u‖z+z(·),

(ii): ‖u‖z(·) < 1⇒ ‖u‖p
+

z(·) < ρz(·)(u) < ‖u‖z−z(·).

The Sobolev spaces with variable exponent is defined by

W 1,z(·)(Ω) =
{
u ∈ Lz(·)(Ω) and |∇u| ∈ Lz(·)(Ω)

}
,

equipped with the following norm

‖u‖1,z(·) = ‖u‖z(·) + ‖∇u‖z(·).

The space (W 1,z(·)(Ω), ‖ · ‖1,z(·)) is a separable and reflexive Banach space.
Now, we present the anisotropic variable exponent Sobolev space used for the study of the

main problem.
Let z0(·), z1(·), . . . , zN (·) be N + 1 variable exponents in C+(Ω). We denote

~z(·) =
{
z0(·), . . . , zN (·)

}
, D0u = u and Diu =

∂u

∂xi
for i = 1, . . . , N.

We define

z = min
{
z−i , i = 0, 1, . . . , N

}
then z > 1, (7)

and

z = max
{
z+
i , i = 0, 1, . . . , N

}
. (8)

The anisotropic Sobolev space with variable exponent W 1,~z(·)(Ω) is defined as follows

W 1,~z(·)(Ω) =
{
u ∈ Lz0(·)(Ω) and Diu ∈ Lzi(·)(Ω) for i = 1, 2, . . . , N

}
,

endowed with the norm

‖u‖1,~z(·) =

N∑
i=0

‖Diu‖zi(·). (9)

The space
(
W 1,~z(·)(Ω), ‖ · ‖1,~z(·)

)
is separable and reflexive Banach space (cf. [4, 12]).

3. Essential assumptions

Let p0(·), p1(·), . . . , pN (·) and q0(·), q1(·), . . . , qN (·) be 2(N + 1) variable exponents in
C+(Ω). We assume that

p > N and q > N. (10)
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Proposition 3.1. Since W 1,~p(·)(Ω) (respectively W 1,~q(·)(Ω)) is continuously embedded in
W 1,p(Ω)(respectively W 1,q(Ω)), and since W 1,p(Ω) and W 1,q(Ω) are compactly embedded in

C0(Ω) (the space of continuous functions), thus the spaces W 1,~p(·)(Ω) and W 1,~q(·)(Ω) are
compactly embedded in C0(Ω).

Then we can set

C1 = sup
u∈W 1,~p(·)(Ω)\{0}

‖u‖∞
‖u‖1,~p(·)

. (11)

C2 = sup
u∈W 1,~q(·)(Ω)\{0}

‖u‖∞
‖u‖1,~q(·)

. (12)

The applications ai, bi : Ω×R 7−→ R are Carathéodory functions which satisfy the following
assumptions :

(H1): The growth condition :

|ai(x, s)| ≤ ηi(ci(x) + |s|pi(x)−1) for i = 1, . . . , N,

|bi(x, s)| ≤ δi(di(x) + |s|qi(x)−1) for i = 1, . . . , N,

where ci(·) (respectively di(·)) is a nonnegative function in Lp
′
i(·)(Ω) (respectively in

Lq
′
i(·)(Ω)), ηi and δi are positives constants.

(H2): The coercivity condition : There exist four constants α1, β1, α2, β2 > 0 such
that

α1|s|pi(x) ≤ ai(x, s)s ≤ β1Ai(x, s),

α2|s|qi(x) ≤ bi(x, s)s ≤ β2Bi(x, s),

where the functions Ai, Bi : Ω× R 7−→ R, are defined by

Ai(x, s) =

∫ s

0
ai(x, t) dt and Bi(x, s) =

∫ s

0
bi(x, t) dt.

(H3): The monotonicity condition :(
ai(x, s)− ai(x, t)

)
(s− t) > 0, for all x ∈ Ω, ∀s, t ∈ R with t 6= s.(

bi(x, s)− bi(x, t)
)

(s− t) > 0, for all x ∈ Ω, ∀s, t ∈ R with t 6= s.

(H4): h(·), k(·) ∈ L∞(Ω) and θ(·) ∈ C(Ω) such that there exist h0, k0 > 0 such that

ess inf
x∈Ω

h(x) > h0 and ess inf
x∈Ω

k(x) > k0.

(H5): f, g ∈ C(R2) such that the differential form f(u, v)du+ g(u, v)dv be exact.

Remark 3.1. (H5) implies that exists H : R2 7−→ R be the integral of the differential form
f(u, v)du+ g(u, v)dv such that H(0, 0) = 0.

Let X be the Cartesian product between W 1,~p(·)(Ω) and W 1,~q(·)(Ω) Sobolev spaces with the

norm ‖(u, v)‖X =
√
‖u‖21,~p(·) + ‖v‖21,~q(·) or another equivalent to it.

We introduce the functionals Ψ(·, ·), Φ(·, ·) : W 1,~p(·)(Ω)×W 1,~q(·)(Ω) 7−→ IR by

Ψ(u, v) =
N∑
i=1

∫
Ω
Ai(x,

∂u

∂xi
) dx+

N∑
i=1

∫
Ω
Bi(x,

∂v

∂xi
) dx
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+

∫
Ω

h(x)

p0(x)
|u|p0(x) dx+

∫
Ω

k(x)

q0(x)
|v|q0(x) dx, (13)

and

Φ(u, v) = −
∫

Ω
F (x, u(x), v(x)) dx. (14)

where F : Ω× R× R −→ R be defined as F (x, u, v) = θ(x)H(u, v).

Lemma 3.1. ( see [9], [12]) The functionals Ψ(·, ·) and Φ(·, ·) are well defined on X. In
addition, Ψ(·, ·) and Φ(·, ·) is of class C1(X,R) and

Ψ′(u, v)(w, φ) =

N∑
i=1

∫
Ω
ai

(
x,
∂u

∂xi

) ∂w
∂xi

dx+

N∑
i=1

∫
Ω
bi

(
x,

∂v

∂xi

) ∂φ
∂xi

dx

+

∫
Ω
h(x)|u|p0(x)−2uw dx+

∫
Ω
k(x)|v|q0(x)−2vφ dx, (15)

and

Φ′(u, v)(w, φ) = −
∫

Ω
θ(x)

(∂H
∂u

(u(x), v(x))w(x) +
∂H

∂v
(u(x), v(x))φ(x)

)
dx. (16)

∀(u, v)(w, φ) ∈ X.

Lemma 3.2. (see [9]) Under the hypothesis (H1)-(H5) and (10) the functionals Ψ(·, ·) and
Φ(·, ·) are weakly lower semicontinuous.

Lemma 3.3. Under the hypothesis (H1)-(H5) the functional Ψ(·, ·) is ceorcive, that is,

Ψ(u, v) −→ +∞ as ‖(u, v)‖X −→ +∞ for (u, v) ∈ X.

Proof Let (u, v) ∈ X, one has

Ψ(u, v) =
N∑
i=1

∫
Ω
Ai(x,

∂u

∂xi
) dx+

N∑
i=1

∫
Ω
Bi(x,

∂v

∂xi
) dx

+

∫
Ω

h(x)

p0(x)
|u|p0(x) dx+

∫
Ω

k(x)

q0(x)
|v|q0(x) dx, (17)

then by using (H2) and (H4), we get

Ψ(u, v) ≥
N∑
i=1

∫
Ω

α1

β1

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx+

∫
Ω

h0

p+
0

|u|p0(x) dx

+
N∑
i=1

∫
Ω

α2

β2

∣∣∣ ∂v
∂xi

∣∣∣qi(x)
dx+

∫
Ω

k0

q+
0

|v|q0(x) dx

≥ min
(α1

β1
,
h0

p+
0

)[ N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pi(x)
dx+

∫
Ω
|u|p0(x) dx

]

+ min
(α2

β2
,
k0

q+
0

)[ N∑
i=1

∫
Ω

∣∣∣ ∂v
∂xi

∣∣∣qi(x)
dx+

∫
Ω
|v|q0(x)

]
dx

≥ min
(α1

β1
,
h0

p+
0

)[ 1

Np−1

( N∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
pi(·)

)p
+ ‖u‖pp0(·) −N − 1

]
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+ min
(α2

β2
,
k0

q+
0

)[ 1

N q−1

( N∑
i=1

∥∥∥ ∂v
∂xi

∥∥∥
qi(·)

)q
+ ‖u‖qq0(·) −N − 1

]

≥ min
(α1

β1
,
h0

p+
0

)[ 1

(2N)p−1

( N∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
pi(·)

+ ‖u‖p0(·)

)p
−N − 1

]

+ min
(α2

β2
,
k0

q+
0

)[ 1

(2N)q−1

( N∑
i=1

∥∥∥ ∂v
∂xi

∥∥∥
qi(·)

+ ‖u‖q0(·)

)q
−N − 1

]

=
min

(
α1
β1
, h0
p+0

)
(2N)p−1 ‖u‖p1,~p(·) +

min
(
α2
β2
, k0
q+0

)
(2N)q−1 ‖u‖q1,~q(·) −K2

≥ K1

(
‖u‖p1,~q(·) + ‖v‖q1,~q(·)

)
−K2

≥ K1‖(u, v)‖X −K2,

where K1,K2 > 0 constants.
Thus, if ‖(u, v)‖X −→ +∞ then Ψ(u, v) −→ +∞. �

Now, we set η1 =
(

C1
h0meas(Ω)

)p
and η2 =

(
C2

k0meas(Ω)

)q
,

α = min

{
1

pηp1
,

1

pη
p

1

}
,

and

β = min

{
1

qηq2
,

1

qη
q

2

}
.

The sets A(r), B(r), r > 0, below satisfied, play an important role in our exposition

A(r) =
{

(ξ, η) ∈ R2 such that αF~p(·)(ξ) + βF~q(·)(η) ≤ r
}

and

B(r) =

{
(ξ, η) ∈ R2 such that

1

p

∫
Ω
h(x)dxD~p(·)(ξ) +

1

q

∫
Ω
k(x)dxD~q(·)(η) ≤ r

}
where D~r(·)(t) = max(|t|r, |t|r) and F~r(·)(t) = min(|t|r, |t|r) with ~r(·) ∈ {~p(·), ~q(·)} and t ∈
{ξ, η}.

Lemma 3.4. For all r > 0, we have

B(r) ⊂ A(r).

Proof We observe that, by the definition of constants C1 and C2, we have

‖u‖∞ ≤ C1‖u‖1,~p(·),∀u ∈W 1,~p(·)(Ω)

and

‖v‖∞ ≤ C2‖v‖1,~q(·),∀v ∈W 1,~q(·)(Ω).

For u ≡ v ≡ 1, we get

1 ≤ ηp1h0meas(Ω) ≤ ηp1
∫

Ω
h(x)dx,



77

and

1 ≤ ηq2k0meas(Ω) ≤
∫

Ω
ηq2k(x)dx.

Thus, we obtain

α ≤ 1

pηp1
≤ 1

p

∫
Ω
h(x)dx, and β ≤ 1

qηq2
≤ 1

q

∫
Ω
k(x)dx.

Hence

α ≤ 1

p

∫
Ω
h(x)dx, and β ≤ 1

q

∫
Ω
k(x)dx.

Since
F~p(·)(t) ≤ D~p(·)(t), and F~q(·)(t) ≤ D~q(·)(t),∀t ∈ R.

Thus, the inequality

αF~p(·)(ξ) + βF~q(·)(η) ≤ 1

p

∫
Ω
h(x)dxD~p(·)(ξ) +

1

q

∫
Ω
k(x)dxD~q(·)(η).

holds for every (ξ, η) ∈ R2 and therefore the inclusion

B(r) ⊂ A(r), ∀r > 0

holds. �

4. Main results

Definition 4.1. We say that (u, v) ∈ X a weak solution to the problem (P) if for all (w, φ) ∈
X, we have ∫

Ω

[ N∑
i=1

ai
(
x,
∂u

∂xi
(x)
) ∂w
∂xi

(x) + h(x)|u(x)|p0(x)−2u(x)w(x)

]
dx

+

∫
Ω

[ N∑
i=1

bi
(
x,

∂v

∂xi
(x)
) ∂φ
∂xi

(x) + k(x)|v(x)|q0(x)−2v(x)φ(x)

]
dx

=

∫
Ω
θ(x)

[
f(u(x), v(x))w(x) + g(u(x), v(x))φ(x)

]
dx,

the weak solutions of (P) are precisely critical points of Ψ + Φ.

One of our main results is the following theorem

Theorem 4.1. Suppose that Ψ(·, ·) and Φ(·, ·) are as in (13) and (14) and (H1)-(H5) and
(10) hold true.

(a): If there exist ρ0 > 0, (ξ0, η0) ∈ R2 with (ξ0, η0) ∈ Int(B(ρ0))
(
Int(B) is the

interior of B
)

and maxA(ρ0)H(ξ, η) = H(ξ0, η0). Then, Problem (P) admits a weak

solution (u, v) ∈ X such that Ψ(u, v) < ρ0.
(b): If there exist a sequences, (ρn)n ⊂ R+ with ρn −→∞ as n −→ +∞ and (ξn)n, (ηn)n ⊂

R such that (ξn, ηn) ∈ Int(B(ρn)) and maxA(ρn)H(ξ, η) = H(ξn, ηn), ∀n > 0 and if

lim sup
(ξ,η)→+∞

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> max

(1

p
,
1

q

)
.
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Then, the problem (P) admits an unbounded sequence of a weak solutions in X.
(c): If there exist a sequences, (ρn)n ⊂ R+ with ρn −→ 0 as n −→ +∞ and (ξn)n, (ηn)n ⊂

R such that (ξn, ηn) ∈ Int(B(ρn)) and maxA(ρn)H(ξ, η) = H(ξn, ηn), ∀n > 0 and if

lim sup
(ξ,η)→(0,0)

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> max

(1

p
,
1

q

)
.

Then the problem (P) admits a sequence of non zero weak solutions which strongly
converges to (u, v) in X.

Proof

Step 1: Proof of assertion (a). We apply the part a of theorem 1.1 for showing that ϕ(ρ0) = 0
( here ϕ is the function defined in the theorem 1.1 and t = 1 is assumed).
First, we observe that ∀(u, v) ∈ Ψ−1(]−∞, ρ0[), one has

0 ≤ ϕ(ρ0) = inf
Ψ−1(]−∞,ρ0[)

Φ(u, v)− inf
(Ψ−1(]−∞,ρ0[))

w
Φ(u, v)

ρ0 −Ψ(u, v)

≤
Φ(u, v)− inf

Ψ−1(]−∞,ρ0[)
w

Φ(u, v)

ρ0 −Ψ(u, v)
. (18)

Let u0(x) = ξ0, v0(x) = η0, ∀x ∈ Ω, then ∇un = ∇v0 = 0 and Since (ξ0, η0) ∈ Int(B(ρ0)),
one has

Ψ(u0, v0) =

∫
Ω

[ 1

p0(x)
h(x)|ξ0|p0(x) +

1

q0(x)
k(x)|η0|q0(x)

]
dx

≤ 1

p

∫
Ω
h(x)dxD~p(·)(ξ0) +

1

q

∫
Ω
k(x)dxD~q(·)(η0) < ρ0.

Then, for almost every x ∈ Ω and ∀(u, v) ∈ Ψ−1(]−∞, ρ0[)
w

, one has

αF~p(·)(u(x)) + βF~q(·)(v(x)) ≤ Ψ(u, v) ≤ ρ0. (19)

The first inequality in (19) is obtained by the proposition 2.1, while the second inequality in

(19) follows from the fact that Ψ−1(]−∞, ρ0[)
w

= Ψ−1(]−∞, ρ0]).
Thu, since (u(x), v(x)) ∈ A(ρ0) and H(u(x), v(x)) ≤ H(ξ0, η0), ∀x ∈ Ω.

Hence −Φ(u, v) ≤ −Φ(u0, v0) ∀(u, v) ∈ Ψ−1(]−∞, ρ0[)
w

. because,

−Φ(u0, v0) = sup
Ψ−1(]−∞,ρ0[)

w
(−Φ(u, v)) = − inf

Ψ−1(]−∞,ρ0[)w

Φ(u, v),

and since Φ(u0, v0) < ρ0, it follows that

Φ(u0, v0)− inf
Ψ−1(]−∞,ρ0[)

w
Φ(u, v) = Φ(u0, v0)− Φ(u0, v0) = 0.

Then, by choosing (u, v) = (u0, v0) in the inequality (18), one has ϕ(ρ0) = 0.
The conclusion (a) of the theorem 1.1 assures that there is a critical point of Ψ + Φ.
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Step 2: Proof of assertion (b). We apply the part (b) of theorem 1.1.
From the part (a). we know that ϕ(ρn) = 0, ∀n ∈ N.
Then, since limn→∞ ρn = +∞, one has

lim inf
ρ→∞

ϕ(ρ) ≤ lim inf
n→∞

ϕ(ρn) = 0 < 1 = t.

Now, we fix h satisfying that

lim sup
(ξ,η)→+∞

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> h > max

(1

p
,
1

q

)
,

and we choose a sequence (rn, tn)n in R2 such that
√
r2
n + t2n ≥ n and

H(rn, tn)

∫
Ω
θ(x)dx > h

(
D~p(·)(rn)

∫
Ω
h(x)dx+D~q(·)(tn)

∫
Ω
k(x)dx

)
, ∀n ∈ N.

If we denote by un and vn the constant functions on Ω which take the rn and tn values
respectively, we have

Φ(un, vn) + Ψ(un, vn) = Φ(rn, tn) + Ψ(rn, tn)

= −
∫

Ω
F (x, rn, tn)dx+

∫
Ω

1

p0(x)
h(x)|rn|p0(x)dx

+

∫
Ω

1

q0(x)
k(x)|tn|q0(x)dx

≤
∫

Ω

(1

p
− h
)
h(x)D~p(·)(rn)dx

+

∫
Ω

(1

q
− h
)
h(x)D~q(·)(tn)dx < 0, ∀n ∈ N.

Since (
√
r2
n + t2n)n is unbounded, at least one of the two sequences (rn)n or (tn)n admits one

divergent subsequence.
Hence (D~p(·)(rn))n and (D~q(·)(tn))n admit one divergent subsequence, thus, the functional
Φ + Ψ is unbounded from below.
The conclusion (b) of the theorem 1.1 assures that there is a sequence (xn, yn)n of critical
points of Φ + Ψ such that limn→+∞Ψ(xn, yn) = +∞.
Moreover, since Ψ is bounded on each bounded subset of X, the sequence (xn, yn)n must be
unbounded in X.

Step 3: Proof of assertion (c). We apply the part (c) of theorem 1.1. As before, from the
(a). we know that ϕ(ρn) = 0, ∀n ∈ N.
Therefore after observing that infX Ψ = Ψ(u, v) = 0, since limn→∞ ρn = 0, we have

δ = lim inf
ρ→0+

ϕ(ρ) ≤ lim inf
n→+∞

ϕ(ρn) = 0 < 1 = t.

Now, we fix h satisfying

lim sup
(ξ,η)→(0,0)

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> h > max

(1

p
,
1

q

)
,

and choose a sequence ((rn, tn))n in R2 \ {(0, 0)} such that
√
r2
n + t2n ≤ 1

n and

H(rn, tn)

∫
Ω
θ(x)dx > h

(
|rn|p

∫
Ω
h(x)dx+ |tn|q

∫
Ω
k(x)dx

)
, ∀n ∈ R.
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Once more if we denote by un and vn the constant functions on Ω which equal rn and tn
respectively.
Then, from proposition 2.1 the sequence ((un, vn))n strongly converges to (u, v) in X and one
has

Φ(un, vn) + Φ(un, vn) = Φ(rn, tn) + Ψ(rn, tn)

≤
∫

Ω
|rn|p

(1

p
− h
)
h(x)dx

+ |rn|q
∫

Ω

(1

q
− h
)
h(x)dx < 0 ∀n ∈ N.

Since Φ(u, v) + Ψ(u, v) = 0 in virtue of the last inequality (u, v) can’t be a local minimum of
Φ + Ψ.
Then, since (u, v) is the only global minimum of Ψ, the conclusion (c) of the theorem
1.1 assures that there is a sequence of pairwise distinct critical points of Φ + Ψ such that
limn→∞Ψ(xn, yn) = 0 with xn, yn ⇀ 0, thus (xn, yn)n must be in norm infinitesimal. �

The following theorem is a practicable form of theorem 4.1 part (b).

Theorem 4.2. Let (an)n and (bn)n be two sequences in R+ satisfying

bn < an ∀n ∈ N, lim
n→+∞

bn = +∞, lim
n→+∞

an
bn

= +∞

and let

An =
{

(ξ, η) ∈ R2 : F~p(·)(ξ) + F~q(·)(η) ≤ an
}

Bn =
{

(ξ, η) ∈ R2 : D~p(·)(ξ) +D~q(·)(η) ≤ bn
}
,

be such that supAn\IntBn
H ≤ 0 for all n ∈ N.

Finally, let us assume that

lim sup
(ξ,η)→+∞

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> max

(1

p
,
1

q

)
.

Then, Problem (P) admits an unbounded sequence of weak solutions in X.

Proof Since bn < an it follows that Bn ⊆ An.
Let

γ′ = min{α, β} > 0 and δ′ = max
{∫

Ω h(x)dx

p
,

∫
Ω k(x)dx

q

}
> 0.

Then δ′

γ′ > 0 and in virtue of limn→+∞
an
bn

= +∞, then we get δ′

γ′ <
an
bn

for n ∈ N large

enough.
Let ρn = γ′an . Then {ρn}n ⊂ R+ is a divergent sequence and for n large enough, the
following inclusions hold

IntBn ⊆ Bn ⊆ B(ρn) ⊆ A(ρn) ⊆ An,

Then, since H is negative in the set An \ IntBn for all n ∈ N, we have

max
IntBn

H = max
An

H,
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in particular, we have maxIntBn H = maxA(ρn)H for n ∈ N large enough, i.e. there exist at
least one sequence (ξn, ηn)n ⊂ IntBn such that for n large enough, we have

max
A(ρn)

H(ξ, η) = H(ξn, ηn)

Thus, the sequences (ξn)n, (ηn)n and (ρn)n have got the properties required in theorem 4.1
part (b).
This completes the proof. �

The following theorem is a practicable form of theorem 4.1 part (c).

Theorem 4.3. Let (an)n and (bn)n be two sequences in R+ satisfying

bn < an ∀n ∈ N, lim
n→+∞

an = 0, lim
n→+∞

an
bn

= +∞

and let

An =
{

(ξ, η) ∈ R2 : F~p(·)(ξ) + F~q(·)(η) ≤ an
}

Bn =
{

(ξ, η) ∈ R2 : D~p(·)(ξ) +D~q(·)(η) ≤ bn
}
,

be such that supAn\IntBn
H ≤ 0 for all n ∈ N.

Finally, let us assume that

lim sup
(ξ,η)→(0,0)

H(ξ, η)
∫

Ω θ(x)dx

D~p(·)(ξ)
∫

Ω h(x)dx+D~q(·)(η)
∫

Ω k(x)dx
> max

(1

p
,
1

q

)
.

Then, Problem (P) admits a sequence of non-zero weak solutions which strongly converges to
(u, v) in X.

Proof Likewise, by applying theorem 4.1 part (c), we get the theorem 4.3, whose proof will
be omitted. �

5. Conclusion and perspective

In this paper we have proved an existence result of infinitely many solutions of the elliptic
problem (P) in the anisotropic variable exponent Sobolev spaces by applying a variational
principe of Ricceri, our future works will be devoted to the existence of infinitely many
solutions elliptic and parabolic problems in the case of flux boundary conditions and the
framework of anisotropic Sobolev spaces.
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[13] M. Mihǎilescu, G. Morosanu, Existence and multiplicity of solutions for an anisotropic
elliptic problem involving variable exponent growth conditions, Appl. Anal. 89 (2010) 257-
271.

[14] D. S. Moschetto, Infintly many solutions to the Dirichlet problem for quasilinear elliptic
systems involving the p(x) and q(x) Laplacien, Le matematiche Vol . LXIII (2008)Fasc. I,
pp. 223-233.

[15] D. S. Moschetto, Infinitely Many Solutions to the Neumann Problem for Quasilinear El-
liptic Systems Involving the p(x) and q(x)-Laplacian, International Mathematical Forum,
4, 2009, no. 24, 1201-1211.

[16] B. Ricceri, A general variational principle and some of its applications, J. Comput.
Appl.Math. 113 (2000) 401-410.

[17] D. Terman, Radial solutions of an elliptic system: solutions with a prescribed winding
number, Houston Journal of mathematics, 15 (3) (1989).
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