Moroccan J. Pure and Appl. Anal.(MJPAA)

DOI 10.1515/mjpaa-2017-0006 Volume 3(1), 2017, Pages 63–69 ISSN: 2351-8227

Inequalities for the *m*-th derivative of the

(q,k)-Gamma function

Kwara Nantomah^a and Suleman Nasiru^a

ABSTRACT. By using the generalized Hölder's and Minkowski's integral inequalities, some inequalities for the *m*-th derivative of the (q, k)-Gamma function are established. Consequently, some previous results are recovered as particular cases of the present results. **2010 Mathematics Subject Classification.** 33B15, 26D15.

Key words and phrases. Gamma function, (q, k)-analogue, inequality.

1. Introduction and Preliminaries

The classical Gamma function, which is an extension of the factorial notation to noninteger values, is usually defined for x > 0 by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dx$$

satisfying the basic properties:

$$\Gamma(x+1) = x\Gamma(x), \quad x \in \mathbb{R}^+$$

$$\Gamma(n+1) = n!, \quad n \in \mathbb{Z}^+ \cup \{0\}.$$

The Jackson's q-integral from 0 to a and from 0 to ∞ are defined as [6]

$$\int_{0}^{a} f(t) \, d_{q}t = (1-q)a \sum_{n=0}^{\infty} f(aq^{n})q^{n}$$

^aDepartment of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. e-mail: mykwarasoft@yahoo.com, knantomah@uds.edu.gh e-mail: sulemanstat@gmail.com

Received September 15, 2016 - Accepted January 12, 2016.

[©]The Author(s) 2016. This article is published with open access by Sidi Mohamed Ben Abdallah University.

K. NANTOMAH AND S. NASIRU

$$\int_0^\infty f(t) \, d_q t = (1-q) \sum_{-\infty}^\infty f(q^n) q^n$$

provided that the sums converge absolutely. In a generic interval [a, b], the Jackson's q-integral takes the form

$$\int_{a}^{b} f(t) \, d_{q}t = \int_{0}^{b} f(t) \, d_{q}t - \int_{0}^{a} f(t) \, d_{q}t$$

The q-analogue of the Gamma function is defined for $q \in (0, 1)$ and x > 0 by [6]

$$\Gamma_q(x) = \int_0^{\frac{1}{1-q}} t^{x-1} E_q^{-qt} \, d_q t$$

satisfying the properties

$$\Gamma_q(x+1) = [x]_q \Gamma_q(x)$$

$$\Gamma_q(1) = 1$$

where $[x]_q = \frac{1-q^x}{1-q}$ and $E_q^t = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{t^n}{[n]_q!}$ is the q-analogue of the exponential function.

Also, the k-analogue of the Gamma function is also defined for k > 0 and $x \in \mathbb{C} \setminus k\mathbb{Z}^-$ as [4]

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt$$

satisfying the properties

$$\Gamma_k(x+k) = x\Gamma_k(x)$$

$$\Gamma_k(k) = 1.$$

Then the (q, k)-analogue of the Gamma function, $\Gamma_{q,k}(x)$ is defined for $x > 0, q \in (0, 1)$ and k > 0 as [5]

$$\Gamma_{q,k}(x) = \int_0^{\left(\frac{[k]_q}{1-q^k}\right)^{\frac{1}{k}}} t^{x-1} E_{q,k}^{-\frac{q^k t^k}{[k]_q}} d_q t \tag{1}$$

satisfying the properties

$$\Gamma_{q,k}(x+k) = [x]_q \Gamma_{q,k}(x)$$
$$\Gamma_{q,k}(k) = 1$$

where $E_{q,k}^t = \sum_{n=0}^{\infty} q^{\frac{kn(n-1)}{2}} \frac{t^n}{[n]_{q^k}!}$ is the (q,k)-analogue of the exponential function.

The functions $\Gamma(x)$, $\Gamma_q(x)$, $\Gamma_k(x)$ and $\Gamma_{q,k}(x)$ fit into the commutative diagram [5]

$$\begin{array}{c|c} \Gamma_{q,k}(x) \xrightarrow{q \to 1} \Gamma_k(x) \\ k \to 1 \\ \downarrow & \downarrow \\ \Gamma_q(x) \xrightarrow{q \to 1} \Gamma(x) \end{array}$$

Then by differentiating (1) *m* times, we obtain

$$\Gamma_{q,k}^{(m)}(x) = \int_0^{\left(\frac{[k]_q}{1-q^k}\right)^{\frac{1}{k}}} t^{x-1} (\ln t)^m E_{q,k}^{-\frac{q^k t^k}{[k]_q}} d_q t, \quad m \in \mathbb{N}_0$$
(2)

64

where $\Gamma_{q,k}^{(0)}(x) = \Gamma_{q,k}(x)$.

In this paper, the objective is to establish some inequalities for the function $\Gamma_{q,k}^{(m)}(x)$. From the established results, some known results are obtained as particular cases. We present our findings in the following section.

2. Results and Discussion

Let us begin with the following generalizations of the classical Hölder's and Minkowski's integral inequalities.

Lemma 2.1 ([3]). Let f_1, f_2, \ldots, f_n be functions such that the integrals exist. Then the inequality

$$\int_{a}^{b} \left| \prod_{i=1}^{n} f_{i}(t) \right| dt \leq \prod_{i=1}^{n} \left(\int_{a}^{b} \left| f_{i}(t) \right|^{\alpha_{i}} dt \right)^{\frac{1}{\alpha_{i}}}$$
(3)

holds for $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $\sum_{i=1}^n \frac{1}{\alpha_i} = 1$.

Lemma 2.2 ([3]). Let f_1, f_2, \ldots, f_n be functions such that the integrals exist. Then the inequality

$$\left(\int_{a}^{b}\left|\sum_{i=1}^{n}f_{i}(t)\right|^{u}dt\right)^{\frac{1}{u}} \leq \sum_{i=1}^{n}\left(\int_{a}^{b}|f_{i}(t)|^{u}dt\right)^{\frac{1}{u}}$$
(4)

holds for $u \geq 1$.

Theorem 2.1. For i = 1, 2, ..., n, let $\alpha_i > 1$, $\sum_{i=1}^n \frac{1}{\alpha_i} = 1$ and $m_i \in \mathbb{N}_0$ such that $\sum_{i=1}^n \frac{m_i}{\alpha_i} \in \mathbb{N}_0$. Then the inequality

$$\Gamma_{q,k}^{\left(\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}\right)}\left(\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}+\beta\right) \leq \prod_{i=1}^{n}\left(\Gamma_{q,k}^{(m_{i})}(x_{i}+\beta)\right)^{\frac{1}{\alpha_{i}}}\tag{5}$$

is valid for $x_i > 0$, $\beta \ge 0$ and even m_i .

Proof. By (2) and (3), we obtain

$$\begin{split} \Gamma_{q,k}^{(\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}})} \left(\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}+\beta\right) &= \int_{0}^{\left(\frac{[k]q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}+\beta-1} (\ln t)^{\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]q}} d_{q}t \\ &= \int_{0}^{\left(\frac{[k]q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{\sum_{i=1}^{n}\frac{x_{i}+\beta-1}{\alpha_{i}}} (\ln t)^{\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]q}\cdot\sum_{i=1}^{n}\frac{1}{\alpha_{i}}} d_{q}t \\ &= \int_{0}^{\left(\frac{[k]q}{1-q^{k}}\right)^{\frac{1}{k}}} \prod_{i=1}^{n} \left(t^{\frac{x_{i}+\beta-1}{\alpha_{i}}} (\ln t)^{\frac{m_{i}}{\alpha_{i}}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]q}\cdot\frac{1}{\alpha_{i}}}\right) d_{q}t \\ &\leq \prod_{i=1}^{n} \left[\int_{0}^{\left(\frac{[k]q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{x_{i}+\beta-1} (\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]q}} d_{q}t\right]^{\frac{1}{\alpha_{i}}} \end{split}$$

$$=\prod_{i=1}^{n} \left(\Gamma_{q,k}^{(m_i)}(x_i+\beta) \right)^{\frac{1}{\alpha_i}}$$

which completes the proof.

Remark 2.1. By letting n = 2, $\beta = 0$, $m_1 = m_2 = m$, $\frac{1}{\alpha_1} = a$, $\frac{1}{\alpha_2} = b$, $x_1 = x$ and $x_2 = y$ in Theorem 2.1, we obtain Theorem 4.4 of [2].

Remark 2.2. By letting n = 2, $\beta = 0$, $m_1 = m_2 = 0$, $\frac{1}{\alpha_1} = \lambda$, $\frac{1}{\alpha_2} = 1 - \lambda$, $x_1 = x$ and $x_2 = y$ in Theorem 2.1, we obtain Corollary 2.3 of [7].

Remark 2.3. By letting $\beta = 0$, $q \rightarrow 1$ and $k \rightarrow 1$ in Theorem 2.1, we obtain a result of Theorem 2.2 of [1].

Remark 2.4. Let n = 2, $\beta = 0$, $\alpha_1 = \alpha_2 = 2$, $x_1 = x$ and $x_2 = y$ in Theorem 2.1. Then by allowing $q \to 1$ and $k \to 1$, we obtain Theorem 2.1 of [9].

Theorem 2.2. For i = 1, 2, ..., n, let $m_i \in \mathbb{N}_0$ such that m_i is even for each i. Then the inequality

$$\left(\sum_{i=1}^{n} \Gamma_{q,k}^{(m_i)}(x_i)\right)^{\frac{1}{u}} \le \sum_{i=1}^{n} \left(\Gamma_{q,k}^{(m_i)}(x_i)\right)^{\frac{1}{u}}$$
(6)

is valid for $x_i > 0$ and $u \ge 1$.

Proof. We utilize the fact that $\sum_{i=1}^{n} a_i^u \leq (\sum_{i=1}^{n} a_i)^u$, for $a_i \geq 0$, $u \geq 1$ together with the generalized Minkowski's inequality (4). Then by (2) we obtain

$$\begin{split} \left(\sum_{i=1}^{n} \Gamma_{q,k}^{(m_{i})}(x_{i})\right)^{\frac{1}{u}} &= \left(\sum_{i=1}^{n} \int_{0}^{\left(\frac{|k|q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{x_{i}-1} (\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q}} d_{q}t\right)^{\frac{1}{u}} \\ &= \left(\int_{0}^{\left(\frac{|k|q}{1-q^{k}}\right)^{\frac{1}{k}}} \left[\sum_{i=1}^{n} \left(t^{\frac{x_{i}-1}{u}} (\ln t)^{\frac{m_{i}}{u}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q} \cdot \frac{1}{u}}\right)^{u}\right] d_{q}t\right)^{\frac{1}{u}} \\ &\leq \left(\int_{0}^{\left(\frac{|k|q}{1-q^{k}}\right)^{\frac{1}{k}}} \left[\sum_{i=1}^{n} \left(t^{\frac{x_{i}-1}{u}} (\ln t)^{\frac{m_{i}}{u}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q} \cdot \frac{1}{u}}\right)\right]^{u} d_{q}t\right)^{\frac{1}{u}} \\ &\leq \sum_{i=1}^{n} \left(\int_{0}^{\left(\frac{|k|q}{1-q^{k}}\right)^{\frac{1}{k}}} \left(t^{\frac{x_{i}-1}{u}} (\ln t)^{\frac{m_{i}}{u}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q} \cdot \frac{1}{u}}\right)^{u} d_{q}t\right)^{\frac{1}{u}} \\ &= \sum_{i=1}^{n} \left(\int_{0}^{\left(\frac{|k|q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{x_{i}-1} (\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q} \cdot \frac{1}{u}}\right)^{\frac{1}{u}} \\ &= \sum_{i=1}^{n} \left(\int_{0}^{\left(\frac{(k|q}{1-q^{k}}\right)^{\frac{1}{k}}} t^{x_{i}-1} (\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{|k|q}} d_{q}t\right)^{\frac{1}{u}} \end{split}$$

which completes the proof.

Remark 2.5. In particular, by letting n = 2, $m_1 = m$, $m_2 = n$, $x_1 = x$ and $x_2 = y$ in Theorem 2.2, we obtain

$$\left(\Gamma_{q,k}^{(m)}(x) + \Gamma_{q,k}^{(n)}(y)\right)^{\frac{1}{u}} \le \left(\Gamma_{q,k}^{(m)}(x)\right)^{\frac{1}{u}} + \left(\Gamma_{q,k}^{(n)}(y)\right)^{\frac{1}{u}}.$$
(7)

In order to prove the next results, we need the following lemma which is known in the literature as the weighted AM-GM inequality.

Lemma 2.3 ([8]). For i = 1, 2, ..., n, let $Q_i \ge 0$ and $\lambda_i \ge 0$ such that $\sum_{i=1}^n \lambda_i = 1$. Then the inequality

$$\sum_{i=1}^{n} \lambda_i Q_i \ge \prod_{i=1}^{n} Q_i^{\lambda_i} \tag{8}$$

holds.

Theorem 2.3. For i = 1, 2, ..., n, let $\alpha_i > 1$, $\sum_{i=1}^n \frac{1}{\alpha_i} = 1$ and $m_i \in \mathbb{N}$ such that $\sum_{i=1}^n \frac{m_i}{\alpha_i} \in \mathbb{N}$. Then the inequality

$$\exp\Gamma_{q,k}^{\left(\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}\right)}\left(\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}\right) \leq \prod_{i=1}^{n}\left(\exp\Gamma_{q,k}^{(m_{i})}(x_{i})\right)^{\frac{1}{\alpha_{i}}} \tag{9}$$

is satisfied for $x_i > 0$, where m_i and $\sum_{i=1}^n \frac{m_i}{\alpha_i}$ are even.

Proof. Let m_i and $\sum_{i=1}^n \frac{m_i}{\alpha_i}$ be even for each *i*. Then by (2) we obtain

$$\begin{split} &\Gamma_{q,k}^{\left(\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}\right)}\left(\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}\right) - \sum_{i=1}^{n}\frac{\Gamma_{q,k}^{(m_{i})}(x_{i})}{\alpha_{i}} \\ &= \int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} t^{\sum_{i=1}^{n}\frac{x_{i}}{\alpha_{i}}-1}(\ln t)^{\sum_{i=1}^{n}\frac{m_{i}}{\alpha_{i}}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &- \sum_{i=1}^{n}\frac{1}{\alpha_{i}}\int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} t^{x_{i}-1}(\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &= \int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} \prod_{i=1}^{n} t^{\frac{x_{i}}{\alpha_{i}}-1}(\ln t)^{\frac{m_{i}}{\alpha_{i}}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &- \int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} \sum_{i=1}^{n}\frac{1}{\alpha_{i}} t^{x_{i}-1}(\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &= \int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} \left[\prod_{i=1}^{n}\frac{1}{\alpha_{i}} t^{x_{i}-1}(\ln t)^{m_{i}} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &= \int_{0}^{\left(\frac{[k]_{q}}{1-q^{k}}\right)^{\frac{1}{k}}} \left[\prod_{i=1}^{n}t^{\frac{x_{i}}{\alpha_{i}}}(\ln t)^{\frac{m_{i}}{\alpha_{i}}} - \sum_{i=1}^{n}\frac{1}{\alpha_{i}}t^{x_{i}}(\ln t)^{m_{i}}\right] \frac{1}{t} E_{q,k}^{-\frac{q^{k}t^{k}}{[k]_{q}}} d_{q}t \\ &\leq 0 \end{split}$$

which results from (8). Thus,

$$\Gamma_{q,k}^{\left(\sum_{i=1}^{n} \frac{m_i}{\alpha_i}\right)}\left(\sum_{i=1}^{n} \frac{x_i}{\alpha_i}\right) \le \sum_{i=1}^{n} \frac{\Gamma_{q,k}^{(m_i)}(x_i)}{\alpha_i}.$$
(10)

Then by exponentiating (10), we obtain the result (9) concluding the proof.

Remark 2.6. Upon letting $q \to 1$ and $k \to 1$ in Theorem 2.3, we obtain the result of Theorem 2.3 of [1].

Remark 2.7. Let n = 2, $\alpha_1 = \alpha_2 = 2$, $x_1 = x_2 = x$, $m_1 = m + s$ and $m_2 = m - s$ in Theorem 2.3, where m and s are even such that $m \ge s$. Then we recover the result of Theorem 3.1 of [10].

Acknowledgements

The authors authors would like to thank the anonymous referees for their useful comments and suggestions.

References

- T. Batbold, Some Remarks on Results of Mortici, Kragujevac Journal of Mathematics, 36(1)(2012), 73-76.
- [2] K. Brahim and Y. Sidomou, Some inequalities for the q, k-Gamma and Beta functions, Malaya Journal of Matematik, 2(1)(2014), 61-71.
- [3] L. M. B. de Costa Campos, Generalized Calculus with Applications to Matter and Forces, CRC Press, Taylor and Francis Group, New York, 2014.
- [4] R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas, 15(2)(2007), 179-192.
- [5] R. Díaz and C. Teruel, q, k-generalized gamma and beta functions, Journal of Nonlinear Mathematical Physics, 12(1)(2005), 118-134.
- [6] F. H. Jackson, On a q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, (41)(1910), 193-203.
- [7] C. G. Kokologiannaki, Some Properties of $\Gamma_{q,k}(t)$ and Related Functions, International Journal of Contemporary Mathematical Sciences, 11(1)(2016), 1-8.
- [8] Y. Li and X-M. Gu, The Weighted AM-GM Inequality is Equivalent to the Hilder Inequality, arXiv.org, Available online at: https://arxiv.org/abs/1504.02718v2.
- C. Mortici, New inequalities for some special functions via the Cauchy-Buniakovsky-Schwarz inequality, Tamkang Journal of Mathematics, 42(1)(2011), 53-57.
- [10] C. Mortici, Turan type inequalities for the Gamma and Polygamma functions, Acta Universitatis Apulensis, 23 (2010), 117-121.