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m-Convexity and Functional Equations

Teodoro Laraa, Roy Quinterob and Edgar Rosalesa

Abstract. In this research we aim to explore some properties of m-convex functions from the
point of view of functional equations or better, functional inequalities. So far studies of m-
convexity have been devoted mainly to establish properties, inequalities and examples on the
topic, but not to look at the problem from the perspective of functional inequalities.
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1. Introduction

The concept of m-convex function was introduced in [15] and since then many properties,
especially inequalities, have been obtained for them [6, 8, 11, 12], and many more. We present
it here since is one of the key definitions, together with functional equations, used along the
whole paper.

Definition 1. A function f : [0, b]→ R (b > 0) is said to be m-convex in the interval [0, b],
0 ≤ m ≤ 1, if for any x, y ∈ [0, b] and t ∈ [0, 1] we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y). (1.1)
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Remark 2. In the foregoing definition it may happen that f : [0,+∞) → R and everything
runs in the same fashion.

The set
{f : [0, b]→ R | f is m-convex in [0, b] and f(0) ≤ 0}

is usually denoted by Km(b) and in case f : [0,+∞) → R, the corresponding set is named
Km(+∞).

We may say that the beginning of the theory of functional equations is connected with the
work of an excellent specialist in this field, the Hungarian mathematician J. Aczél. In his
numerous papers he treats whole classes of functional equations, gives general methods for
solving them and criteria on the existence and uniqueness of solutions. He also indicates new
applications of this important topic [1, 2, 3, 4, 5].

Definition 3. ([9]) A functional equation is an equality, say, T1 = T2 between two terms
T1 and T2 which contains at least one unknown function and a finite number of independent
variables. This equality is to be satisfied identically with respect to all occurring variables in
a certain set (of any sort).

The solution of a functional equation may depend on the set in which the equation is
postulated. One should also precisely state in what function class the solution is sought. The
number and behavior of solutions depend on this class. It is one of the important differences
between differential and functional equations [9, 10].

In this paper we establish some properties of m-convex functions from de point of view of
both, funcional equations and functional inequalities.

2. Main Results

Here we set and prove our main results, basically we shall deal with the concept of m-convex
function (0 < m < 1) and the expression tx+m(1− t)y, where x, y ∈ [0, b] or x, y ∈ (0,+∞)
and, as usual, t ∈ [0, 1], even in some cases t will be chosen arbitrary but in (0, 1).

Proposition 4. Let f : [0,+∞) → R given as f(x) = xp, with p ∈ R and m ∈ [0, 1] fixed.
The function f is m-convex if and only if p ≥ 1.

Proof. Let x, y ∈ [0,+∞), the function f is in Km(+∞) if and only if

f(tx+m(1− t))y) ≤ tf(x) +m(1− t)f(y)

or equivalently
txp +m(1− t)yp − (tx+m(1− t)y)p ≥ 0. (2.1)

We may assume y > 0, in such way that (2.1) can be rewritten as

tzp +m(1− t)− (tz +m(1− t))p ≥ 0, with z =
x

y
.

Now define the function

F (z) = tzp +m(1− t)− (tz +m(1− t))p,
it is easy to see that

F ′(z) = pt[zp−1 − (tz +m(1− t))p−1],
hence the only critical point is z = m. Further,

F ′′(z) = p(p− 1)t[zp−2 − t(tz +m(1− t))p−2]
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and consequently, F ′′(m) = p(p − 1)tmp−2(1 − t) ≥ 0 for any value of t ∈ [0, 1] if and only
if p ≥ 1. Therefore, for p ≥ 1, F has an absolute minimum at z = m; indeed F (m) =
(1− t)m(1−mp−1) ≥ 0, so F is m-convex under this condition. �

An immediate consequence of the convexity of f(x) = xp, p ≥ 1 is

Proposition 5. For p ≥ 1, the following inequality holds

(tx+ (1− t)my)p ≤ txp + (1− t)(my)p

for every x, y ∈ [0,+∞) and t ∈ [0, 1].

Theorem 6. Let m ∈ (0, 1) and F : [0, b] → R be a function given by F (x) = tx + mb(1 −
t), x ∈ [0, b], and t ∈ (0, 1) arbitrary but fixed. Then, the sequence {Fn(x)}n≥1 defined
recursively by F 1(x) = F (x), Fn+1(x) = F (Fn(x)) has limit as n→ +∞, actually

lim
n→+∞

Fn(x) = mb (2.2)

Proof. We shall show by induction on n the following formula,

Fn(x) = tnx+mb(1− t)
n−1∑
k=0

tk. (2.3)

For n = 1 and n = 2, (2.3) follows at once. Let us assume it true for n and show it for n+ 1.
Indeed,

Fn+1(x) = F (Fn(x)) = tFn(x) +m(1− t)b = t[tnx+mb(1− t)
n−1∑
k=0

tk] +m(1− t)b,

(the last equality because of the induction hypothesis) hence,

Fn+1(x) = tn+1x+mb(1− t)

[
n−1∑
k=0

tk+1 + 1

]
= tn+1x+mb(1− t)

n∑
k=0

tk.

So (2.3) is true, in other words,

Fn+1(x) = tn+1x+mb[1− tn+1]

consequently, and taking into account that 0 < t < 1, conclusion follows. �

Remark 7. If t = 1 then F (x) = x for any x ∈ [0, b] and, of course, Fn(x) = x, while t = 0
makes the sequence a constant, in fact, Fn(x) = mb, x ∈ [0, b].

Theorem 8. Let m and M be two real numbers with 0 < m < 1 and 1 < M , K,L :
[0,+∞)× [0,+∞)→ [0,+∞) two functions given, respectively, as

K(x, y) = tx+m(1− t)y, and, L(x, y) = tx+M(1− t)y,

where t ∈ (0, 1) is arbitrary but fixed.
Define now two new functions T,Q : [0,+∞)× [0,+∞)→ [0,+∞)× [0,+∞) given by

T (x, y) = (K(x, y),K(y, x)), and, Q(x, y) = (K(x, y), L(x, y))

respectively. Then the sets

∆T = {(0, 0)}
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and

∆Q =



{(0, 0)} if M ∈ (1, 1 +m] and t ∈ (0, t1) ∪ (t1, 1)

{(cy, y) : y ≥ 0} if M ∈ (1, 1 +m] and t = t1

{(0, 0)} if M ∈ (1 +m,+∞) and t ∈ (0, t0)

{(0, 0)} if M ∈ (1 +m,+∞) and t = t0

{(0, 0)} if M ∈ (1 +m,+∞) and t ∈ (t0, t1) ∪ (t1, 1)

{(cy, y) : y ≥ 0} if M ∈ (1 +m,+∞) and t = t1

are the set of fixed points of T and Q respectively, where t0 = M−1−m
M−m , t1 = M−1

M−m , and

c = 1− (M −m)(1− t).

Proof. The point (x, y) is a fixed point of T if and only if T (x, y) = (x, y) which is equivalent
to the following pair of equations

tx+m(1− t)y = x, and, ty +m(1− t)x = y,

now by subtracting the second equation from the first

t(x− y) +m(1− t)(y − x) = x− y.
If x 6= y we may divide the whole expression by x − y and the foregoing equation becomes
t −m(1 − t) = 1, hence m = −1 which is impossible. Therefore the only solution is x = y.
Then, we have the inclusion ∆T ⊆ D := {(x, x) : x ≥ 0} but the only point of D that is fixed
by T is (0, 0) which proves

∆T = {(0, 0)}.
The set of fixed points of Q is determined by considering the equations

tx+m(1− t)y = x, and, tx+M(1− t)y = y.

Now we proceed as in the foregoing case by now subtracting the first equation from the second
one and arrive to

(M −m)(1− t)y = y − x,
and from here, x = (1 − (M −m)(1 − t))y which indicates that ∆Q ⊆ E := {(cy, y) : y ≥
0}. From this point on, we will consider different conditions under which a point of set E
belongs to ∆Q. Observe that (0, 0) ∈ E always belongs to ∆Q. Otherwise, (cy, y) ∈ ∆Q

iff simultaneously the equations (after replacing x by cy and dividing by y > 0 the original
equations)

tc+m(1− t) = c, and, tc+M(1− t) = 1

are satisfied. Observe they are equivalent to each other. Let us proceed by considering the
six cases indicated above and the equation tc+M(1− t) = 1.

1st case: M ∈ (1, 1 +m] and t ∈ (0, t1)∪ (t1, 1). In this case, c > 0 but the given equation
can not be solved for t. Then, ∆Q = {(0, 0)}.

2nd case: M ∈ (1, 1 +m] and t = t1. Now, c > 0 and the equation has solution for t = t1.
Therefore, ∆Q = E

3rd case: M ∈ (1 +m,+∞) and t ∈ (0, t0). ∆Q = {(0, 0)}, because c < 0 and the equation
is unsolvable.

4th case: M ∈ (1 + m,+∞) and t = t0. Again, ∆Q = {(0, 0)}, because c = 0 and the
equation is unsolvable.

5th case: M ∈ (1 + m,+∞) and t ∈ (t0, t1) ∪ (t1, 1). One more time, ∆Q = {(0, 0)},
because the equation is unsolvable even though c > 0.

6th case: M ∈ (1 +m,+∞) and t = t1. As in the second case, ∆Q = E. �
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Observe that we can condense the part related to function Q as shows next corollary.

Corollary 9. For the function Q defined in Theorem 8 follows:

∆Q =

{
{(my, y) : y ≥ 0} if t = t1

{(0, 0)} if t ∈ (0, 1)− {t1}

A couple of things may be said about this result; in the case of function T , its set of fixed
points, ∆T = {(0, 0)}, differs considerably from the case when m = 1 (classical convexity)
which consists of half of the diagonal in the plane, namely, the origin and all those points
with both components equal and positive. Similarly, the set ∆Q is made of a half line in the

first quadrant whose equation is y = 1
mx (corresponding to t = t1) and just the origin for the

remaining cases.

Remark 10. If we define R : [0,+∞) × [0,+∞) → [0,+∞) × [0,+∞) by R(x, y) =
(L(x, y), L(y, x)) is easy to verify that the only fixed point of this application is the origin

Remark 11. (1) If t = 0 then, K(x, y) = my and T (x, y) = (my,mx). So, ∆T =
{(0, 0)}.

(2) If t = 1 then, K(x, y) = x and T (x, y) = (x, y). So, ∆T = D.

Remark 12. (1) If t = 0 then, K(x, y) = my, L(x, y) = My, and Q(x, y) = (my,My).
So, ∆Q = {(0, 0)}.

(2) If t = 1 then, K(x, y) = x, L(x, y) = x, and Q(x, y) = (x, x). So, ∆Q = D.

Next step is to characterize or determine which functions f : [0,+∞)→ R satisfy, for given
real numbers 0 < m < 1 < M and t ∈ [0, 1], the following two inequalities,

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y), x, y ≥ 0 (2.4)

and
f(tx+M(1− t)y) ≤ tf(x) +M(1− t)f(y), x, y ≥ 0. (2.5)

Actually the following result shows up,

Theorem 13. If f : [0,+∞)→ R satisfies (2.4) and (2.5) simultaneously then f(x) = f(1)x,
for any x ≥ 0. In other words, the only funcional solutions of set of inequalities (2.4) and
(2.5) are the linear functions.

Proof. First of all, we notice that if f satisfies (2.4) and (2.5), then f(0) = 0; now we set
u = tx+m(1− t)y, v ≥ 0, s ∈ [0, 1] and t as in the hypothesis, hence from (2.5),

f(su+M(1− s)v) ≤ sf(u) +M(1− s)f(v),

or better

f(stx+ sm(1− t)y +M(1− s))v) ≤ sf(tx+m(1− t)y) +M(1− s)f(v)

≤ stf(x) + sm(1− t)f(y) +M(1− s)f(v)

= stf(x) + [sm(1− t) +M(1− s)]f(y),

the last equality holds once we set v = y. Therefore,

f(stx+ sm(1− t)y +M(1− s))y) ≤ stf(x) + [sm(1− t) +M(1− s)]f(y),

from this inequality, if x = 0

f((sm(1− t)y +M(1− s)y)) ≤ [sm(1− t) +M(1− s)]f(y) (2.6)
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and for y = 0,

f(stx) ≤ stf(x), for anyx ≥ 0 and s, t ∈ [0, 1].

Of course if, s = 1 (t = 1) then f(tx) ≤ tf(x) (f(sx) ≤ sf(x) respectively). Choose now

s, t ∈ [0, 1] in such a way that b = ms(1− t) +M(1− s) > 1, a = t and log b
log a is irrational. Use

now (2.6) and the fact that f(tx) ≤ tf(x) to show that

f(anbmx) = anbmf(x), n,m ∈ N, x ≥ 0.

Because of the hypothesis assumed on a and b the set

A = {anbm : n,m ∈ N}
is dense in (0,+∞) [13, 14]; thus for any r > 0 there exists a sequence {nk,mk}k∈N such that
r = limk→+∞ a

nkbmk . But then

lim
k→+∞

f(ankbmkx) ≤ lim
k→+∞

ankbmkf(x),

consequently

f(rx) ≤ rf(x), for any x ≥ 0 and r > 0 arbitrary.

By considering, in this last inequality, x
r instead x and 1

r instead r the following two inequal-
ities show up,

1

r
f(x) ≤ f

(x
r

)
, and f

(x
r

)
≤ f

(x
r

)
,

hence, 1
rf(x) = f(xr ), or f(rx) = rf(x). The proof concludes by choosing x = 1. �
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