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Stability via successive approximation for

nonlinear implicit fractional differential equations

Kishor D. Kucchea and Sagar T. Sutarb

Abstract. In this paper we are concerned with nonlinear implicit fractional differential equa-
tions with initial conditions. We prove the existence and uniqueness results by using modified
version of contraction principle. Further, our prime aim is to present various Ulam-Hyers sta-
bility and Eα-Ulam-Hyers stability results via successive approximation method.
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1. Introduction

Theory of Ulam stability is the outcome of the question raised by S. M. Ulam in 1940 (See
[1]). This theory is concerned with different kinds of equations such as: functional, integral,
differential, difference etc. Hence it is a vast field of research and one of the most important
growing subject in the area of mathematical analysis.

Motivation and basic theoretical development for the research related to Ulam-Hyers sta-
bility and Ulam-Hyers-Rassias stability problems to various forms of ordinary differential and
integral equations of integer orders can be found in [2, 3, 4, 5, 6, 7, 8, 9, 10] and the references
given therein.

Interesting results have been obtained pertaining to different kinds of Ulam-Hyers stability
for ordinary fractional differential and fractional integral equations with and without delay.
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We mention here few recent works by Wang et al. [11, 12, 13, 14], Eghbali et al.[15] and Wei
et al.[16]; also see the references cited therein.

Recently, Benchora et al. [17, 18, 19] obtained existence and various kinds of Ulam-Hyers
stabilities for nonlinear implicit fractional differential equations (NIFDEs) involving Caputo
fractional derivative with initial and boundary conditions. Kucche et al. [20, 21] have studied
existence, uniqueness, continuous dependence and other properties of solutions for NIFDEs .

Here we consider the NIFDEs of the form:

cDαx(t) = f(t, x(t),cDαx(t)), t ∈ [0, b], b > 0, for someα,m− 1 < α ≤ m ∈ N, (1)

x(k)(0) = xk ∈ Rn, k = 0, 1, · · · ,m− 1, (2)

where f : [0, b]× Rn × Rn → Rn is a nonlinear continuous function, x : [0, b] → Rn and cDα

denotes the Caputo fractional derivative of order α with lower terminal 0.
In the present paper, we obtain existence and uniqueness of solutions for NIFDEs (1)-(2)

using modified version of contraction principle. Taking motivation from [6, 10] we present
the Ulam-Hyers stability and Eα-Ulam-Hyers stability results for NIFDE (1) by successive
approximation method.

We remark that Ulam-Hyers stabilities for NIFDEs have been studied by Benchohra and
Lazreg [18] using fixed point approach. Our attempt is here to establish Ulam-Hyers stabil-
ity and Eα-Ulam-Hyers stability results for NIFDE (1) with initial conditions by virtue of
successive approximation method.

2. Preliminaries

Consider the real space Rn with the norm ‖·‖ and denote by B = Cm([0, b],Rn)-the Banach
space all functions from [0, b] into Rn having mth order continuous derivatives endowed with
supremum norm ‖ · ‖B.

Here we give some basic definitions and the results [22, 23, 24, 25] which are required
throughout this paper.

Definition 2.1. Let g ∈ C[0, b] and α ≥ 0 then Riemann-Liouville fractional integral of order
α of a function f is defined as

Iαg(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds,

provided the integral exists.Note that I0g(t) = g(t).

Definition 2.2. Let m − 1 < α ≤ m ∈ N. Then Caputo fractional derivative of a function
g ∈ Cm[0, b] is defined as

cDαg(t) =
1

Γ(m− α)

∫ t

0
(t− s)m−α−1g(m)(s)ds.

Lemma 2.1. Let m− 1 < α ≤ m ∈ N and g ∈ Cm[0, b]. Then

Iα[cDαg(t)] = g(t)−
m−1∑
k=0

g(k)(0)

Γ(k + 1)
tk.
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Lemma 2.2. Let g(t) = tδ, where δ ≥ 0 and let m− 1 < α ≤ m, m ∈ N, then

cDαg(t) =

{
0 if δ ∈ {0, 1, · · · ,m− 1},

Γ(1+δ)
Γ(1+δ−α) t

δ−α if δ ∈ N, δ ≥ m or δ /∈ N, δ > m− 1.

Definition 2.3. Let γ > 0, then one parameter Mittag-Leffler function of order γ > 0 is
defined by

Eγ(z) =
∞∑
k=0

zk

Γ(γk + 1)
.

We need the following results in our analysis.

Lemma 2.3. [26] For all µ > 0 and ν > −1,∫ t

0
(t− s)µ−1sνds = tµ+ν Γ(µ)Γ(ν + 1)

Γ(µ+ ν + 1)
.

In order to derive our result, we need the following generalized singular Gronwall inequality
introduced by Ye et al.[27]

Lemma 2.4. [27] Suppose β > 0, ã(t) is a nonnegative function locally integrable on 0 ≤
t < b, b ≤ ∞ and g̃(t) is nonnegative, nondecreasing continuous functions defined and
g̃(t) ≤M, t ∈ (0, b], and suppose y(t) is nonnegative and locally integrable on (0, b] with

y(t) ≤ ã(t) + g̃(t)

∫ t

0
(t− s)β−1y(s)ds, t ∈ (0, b].

Then

y(t) ≤ ã(t) +

∫ t

0

[ ∞∑
n=1

(g̃(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1ã(s)

]
ds, t ∈ (0, b].

Remark 2.1. Under the hypothesis of Lemma 2.4, let ã(t) be a nondecreasing function on
[0, b). Then we have

y(t) ≤ ã(t)Eβ(g̃(t)Γ(β)tβ).

To prove the existence and uniqueness results for (1)-(2), we use the modified version of
contraction principle given below.

Lemma 2.5 ( [28], Modified version of contraction principle). Let X be a Banach space and
let D be an operator which maps the element of X into itself for which Dr is a contraction,
where r is a positive integer then D has a unique fixed point.

Definition 2.4. A function x ∈ B is said to be a solution of (1)-(2) if x satisfies the equation
cDαx(t) = f(t, x(t),cDαx(t)) on [0, b], and also satisfies the initial conditions x(k)(0) =
xk, k = 0, 1, · · · ,m− 1, where m− 1 < α ≤ m ∈ N.

3. Existence and uniqueness

In the following lemma we obtain an equivalent fractional integral equation to the problem
(1)-(2)
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Lemma 3.1. . Let f : [0, b] × Rn × Rn → Rn be a continuous function. Then the NIFDEs
(1)-(2) is equivalent to the fractional integral equation

x(t) =

m−1∑
k=0

xk
Γ(k + 1)

tk +
1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds, t ∈ [0, b], (3)

where p ∈ B satisfies the functional equation

p(t) = f

(
t,

m−1∑
k=0

xk
Γ(k + 1)

tk + Iαp(t), p(t)

)
, t ∈ [0, b]. (4)

Proof. Let x : [0, b]→ Rn in B is a solution of NIFDE (1)-(2). Put

cDαx(t) = p(t), t ∈ [0, b], m− 1 < α ≤ m (m ∈ N),

where p ∈ B. Operating Iα on both side, in the view of Lemma 2.1, we obtain

x(t) =
m−1∑
k=0

xk
Γ(k + 1)

tk + Iαp(t) , t ∈ [0, b].

Thus equation(1) becomes

p(t) = f (t, x(t), p(t))

= f

(
t,
m−1∑
k=0

xk
Γ(k + 1)

tk + Iαp(t), p(t)

)
, t ∈ [0, b].

Hence x is solution of fractional integral equations (3), here p ∈ B satisfies (4).
Conversely let x : [0, b]→ Rn in B satisfies the integral equation (3) where p ∈ B satisfies

(4). Then equation (3) can be written as

x(t) =
m−1∑
k=0

xk
Γ(k + 1)

tk + Iαp(t) , t ∈ [0, b]. (5)

Using Lemma 2.2 and the continuity of p, an application of the operator cDα on both sides
of the above equation, gives

cDαx(t) =

m−1∑
k=0

xk
Γ(k + 1)

cDα{tk}+ cDαIαp(t) = p(t) , t ∈ [0, b]. (6)

But p satisfies (4). Thus using (5) and (6) in (4), we obtain

cDαx(t) = f(t, x(t),cDαx(t)), t ∈ [0, b].

Further from (3), one can verify that

x(k)(0) = xk, (k = 0, 1, · · · ,m− 1).

�

In the next theorem we prove the existence and uniqueness results for (1)-(2) by using
modified version of contraction principle given in Lemma 2.5.

Theorem 3.1. (Existence and uniqueness) Let f : [0, b] × Rn × Rn → Rn be a continuous
function that satisfies the Lipschitz type condition:
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(H1) there exist constants M > 0 and 0 < N < 1 such that

‖f(t, x, y)− f(t, x̄, ȳ)‖ ≤M‖x− x̄‖+N‖y − ȳ‖, t ∈ [0, b]; x, x̄, y, ȳ ∈ Rn.

Then the initial-value problem (1)-(2) has a unique solution x : [0, b]→ Rn.

Proof. In the light of Lemma 3.1, we write the problem (1)-(2) as a fixed point problem.
Consider the operator F : B → B defined by

Fx(t) =
m−1∑
k=0

xk
Γ(k + 1)

tk +
1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds, t ∈ [0, b],

where p ∈ B satisfies the functional equation

p(t) = f (t, x(t), p(t)) , t ∈ [0, b].

Our aim is to prove that F has a fixed point. By using mathematical induction, for any
x, z ∈ B and t ∈ [0, b], we prove that

‖F jx(t)− F jz(t)‖ ≤ (θtα)j

Γ(jα+ 1)
‖x− z‖B, ∀j ∈ N, (7)

where θ =

(
M

1−N

)
> 0.

Let any x, z ∈ B and t ∈ [0, b]. Then by definition of operator F we have,

‖Fx(t)− Fz(t)‖ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖p(s)− q(s)‖ds, (8)

where p, q ∈ B satisfies the functional equations

p(t) = f (t, x(t), p(t)) and q(t) = f (t, z(t), q(t)) , t ∈ [0, b].

By assumption (H1), for any t ∈ [0, b], we have

‖p(t)− q(t)‖ = ‖f (t, x(t), p(t))− f (t, z(t), q(t)) ‖
≤M‖x(t)− z(t)‖+N‖p(t)− q(t)‖.

Therefore

‖p(t)− q(t)‖ ≤ θ‖x(t)− z(t)‖, t ∈ [0, b].

Using the above estimation in (8), we obtain

‖Fx(t)− Fz(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖x(s)− z(s)‖ds

≤ θ

Γ(α)

(∫ t

0
(t− s)α−1ds

)
‖x− z‖B.

Therefore,

‖Fx(t)− Fz(t)‖ ≤ θtα

Γ(α+ 1)
‖x− z‖B , t ∈ [0, b]

Thus the inequality (7) holds for j = 1. Let us suppose that (7) holds for j = r ∈ N, that is,

‖F rx(t)− F rz(t)‖ ≤ (θtα)r

Γ(rα+ 1)
‖x− z‖B, t ∈ [0, b]. (9)
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We prove that (7) holds for j = r + 1. Again, by definition of operator F , we have

‖(F r+1)x(t)− (F r+1)z(t)‖ = ‖F (F rx(t))− F (F rz(t))‖

≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖h(s)− g(s)‖ds, t ∈ [0, b],

where h, g ∈ B are such that

h(t) = f (t, F rx(t), h(t)) and g(t) = f (t, F rz(t), g(t)) , t ∈ [0, b].

By assumption (H1) we have

‖h(t)− g(t)‖ ≤ θ‖F rx(t)− F rz(t)‖, t ∈ [0, b].

Hence we get,

‖(F r+1)x(t)− (F r+1)z(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖F rx(s)− F rz(s)‖ds, t ∈ [0, b].

Using (9) and the Lemma 2.3 in the above inequality, we obtain

‖(F r+1)x(t)− (F r+1)z(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1 (θsα)r

Γ(rα+ 1)
‖x− z‖Bds

≤ θr+1

Γ(α)Γ(rα+ 1)

(∫ t

0
(t− s)α−1srαds

)
‖x− z‖B

=
θr+1

Γ(α)Γ(rα+ 1)
tα(r+1) Γ(α)Γ(rα+ 1)

Γ((r + 1)α+ 1)
‖x− z‖B.

Therefore,

‖(F r+1)x(t)− (F r+1)z(t)‖ ≤ (θtα)r+1

Γ((r + 1)α+ 1)
‖x− z‖B, t ∈ [0, b].

We have proved that the inequality (7) holds for j = r + 1. By principle of mathematical
induction the proof of the inequality (7) is completed.

From the inequality (7) we have

‖F jx− F jz‖B = sup
t∈[0,b]

‖F jx(t)− F jz(t)‖ ≤ (θbα)j

Γ(jα+ 1)
‖x− z‖B.

By definition of one parameter Mittag-Leffler function, we have

Eα(θbα) =

∞∑
j=0

(θbα)j

Γ(jα+ 1)
.

Note that (θbα)j

Γ(jα+1) is the jth term of the convergent series of nonnegative real numbers, hence

we must have

lim
j→∞

(θbα)j

Γ(jα+ 1)
= 0.

Thus we can choose j ∈ N such that (θbα)j

Γ(jα+1) < 1 so that F j is a contraction. Therefore by

modified version of contraction principle, F has a unique fixed point x : [0, b] → Rn in B,
which is the unique solution of the initial value problem (1)-(2). �
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4. Ulam-Hyers Stability of NIFDE

To study the stability results we use following definitions adopted in [12, 18].

Definition 4.1. We say that equation (1) has Ulam-Hyers stability if there exists a real
number Kf > 0 such that for each ε > 0, if y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ ε, t ∈ [0, b],

then there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ εKf , t ∈ [0, b].

Definition 4.2. We say that equation (1) has generalized Ulam-Hyers stability if there exists
ψ ∈ C(R+,R+), ψ(0) = 0 such that for each ε > 0, if y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ ε, t ∈ [0, b],

then there exists a solution x : [0, b]→ Rnof equation (1) in B with

||y(t)− x(t)|| ≤ ψ(ε), t ∈ [0, b].

Definition 4.3. We say that equation (1) has Ulam-Hyers-Rassias stability with respect to
with respect to η ∈ C([0, b],R+) if there exists a real number Kf > 0 such that for each ε > 0,
if y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ ε η(t), t ∈ [0, b],

then there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ Kf ε η(t), t ∈ [0, b].

Definition 4.4. We say that equation (1) has generalized Ulam-Hyers-Rassias stability with
respect to with respect to η ∈ C([0, b],R+) if there exists a real number Kf,η > 0 such that if
y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ η(t), t ∈ [0, b],

then there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ Kf,η η(t), t ∈ [0, b].

In the following theorems by method of successive approximation we prove Ulam-Hyers
type stability results for equation (1).

Theorem 4.1. Let f : [0, b] × Rn × Rn → Rn be a continuous function that satisfies the
Lipschitz type condition (H1). For every ε > 0, if y : [0, b]→ Rn in B satisfies

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ ε, t ∈ [0, b],

then there exists unique solution x : [0, b]→ Rn in B of NIFDE (1) with x(k)(0) = y(k)(0), k =
0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤
(
Eα(θbα)− 1

θ

)
ε, t ∈ [0, b],

where θ = M
(1−N) > 0.
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Proof. For every ε > 0, let y : [0, b]→ Rn in B satisfies

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ ε, t ∈ [0, b], (10)

then there exists a function σy ∈ B (depending on y) such that ,

‖σy(t)‖ ≤ ε, t ∈ [0, b]

and

cDαy(t) = f(t, y(t),cDαy(t)) + σy(t), t ∈ [0, b]

In the view of Lemma 3.1, y satisfies the fractional integral equation

y(t) =
m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p0(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1σy(s)ds, t ∈ [0, b],

where p0 ∈ B is such that

p0(t) = f
(
t, y(t), p0(t)

)
, t ∈ [0, b].

Define,

x0(t) = y(t), t ∈ [0, b],

and consider the sequence
{
xj
}
⊆ B defined by ,

xj(t) =
m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1pj−1(s)ds, t ∈ [0, b], j ∈ N, (11)

where pj−1 ∈ B (j ∈ N) is such that:

pj−1(t) = f
(
t, xj−1(t), pj−1(t)

)
, t ∈ [0, b]. (12)

By principle of mathematical induction, we prove that

‖xj(t)− xj−1(t)‖ ≤ ε

θ

(θtα)j

Γ(jα+ 1)
, j ∈ N , t ∈ [0, b]. (13)

First we prove the inequality (13) for j=1. Using the definition of successive approximations,
for any t ∈ [0, b], we have

‖x1(t)− x0(t)‖ =

∥∥∥∥∥
m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p0(s)ds− y(t)

∥∥∥∥∥
=

∥∥∥∥∥
m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk + Iαp0(t)−

(
m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk + Iαp0(t) + Iασy(t)

)∥∥∥∥∥
= ‖Iασy(t)‖

≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖σy(s)‖ds

≤ εtα

Γ(α+ 1)
.

Therefore

‖x1(t)− x0(t)‖ ≤ ε

θ

θtα

Γ(α+ 1)
, t ∈ [0, b],
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which proves the inequality (13) for j = 1. Now, we assume the inequality (13) hold for
j = r ∈ N and prove it for j = r + 1. Using definition of successive approximations for any
t ∈ [0, b],

‖xr+1(t)− xr(t)‖ =

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1

(
pr(s)− pr−1(s)

)
ds

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∥∥pr(s)− pr−1(s)
∥∥ ds. (14)

Since pj(t) = f
(
t, xj(t), pj(t)

)
, t ∈ [0, b], using the assumption (H1) we obtain,∥∥pr(t)− pr−1(t)
∥∥ =

∥∥f (t, xr(t), pr(t))− f
(
t, xr−1(t), pr−1(t)

)∥∥
≤M‖xr(t)− xr−1(t)‖+N‖pr(t)− pr−1(t)‖.

Therefore ∥∥pr(t)− pr−1(t)
∥∥ ≤ θ‖xr(t)− xr−1(t)‖, t ∈ [0, b].

Using above estimate and the inequality (13) for j = r in (14), we obtain

‖xr+1(t)− xr(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖xr(s)− xr−1(s)‖ds

≤ θ

Γ(α)

∫ t

0
(t− s)α−1 ε

θ

(θsα)r

Γ(rα+ 1)
ds

=
ε

Γ(α)

θr

Γ(rα+ 1)

∫ t

0
(t− s)α−1srαds.

Using Lemma 2.3, we have

‖xr+1(t)− xr(t)‖ ≤ ε

Γ(α)

θr

Γ(rα+ 1)
t(r+1)α Γ(α)Γ(rα+ 1)

Γ((r + 1)α+ 1)
.

Therefore

‖xr+1(t)− xr(t)‖ ≤ ε

θ

(θtα)r+1

Γ((r + 1)α+ 1)
, t ∈ [0, b].

which is the inequality (13) for j = r + 1. Using principle of mathematical induction the
proof of the inequality (13) is completed.

Note that from (13),

‖xj(t)− xj−1(t)‖ ≤ ε

θ

(θbα)j

Γ(jα+ 1)
for any t ∈ [0, b] and j ∈ N.

Therefore for any t ∈ [0, b] we can write,

∞∑
j=1

‖xj(t)− xj−1(t)‖ ≤ ε

θ

∞∑
j=1

(θbα)j

Γ(jα+ 1)
=
ε

θ
(Eα(θbα)− 1). (15)

Hence the series

x0(t) +

∞∑
j=1

[xj(t)− xj−1(t)]

converges absolutely and uniformly on [0, b] with respect to the norm ‖ · ‖. Let
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x(t) = x0(t) +
∞∑
j=1

[xj(t)− xj−1(t)], t ∈ [0, b]. (16)

Then

xr(t) = x0(t) +

r∑
j=1

[xj(t)− xj−1(t)]

is the rth partial sum of the series (16) we have

lim
r→∞

‖xr(t)− x(t)‖ = 0, for all t ∈ [0, b]. (17)

Since the convergence is uniform, x ∈ B. We prove that the limit function x is a solution of

x(t) =

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds, t ∈ [0, b],

where p ∈ B satisfies the functional equation

p(t) = f (t, x(t), p(t)) , t ∈ [0, b].

First we prove that pr ∈ B (r = 0, 1, 2, ...) generated in (12) satisfies

lim
r→∞

‖pr(t)− p(t)‖ = 0 for any t ∈ [0, b]. (18)

By using assumption (H1), we obtain

‖pr(t)− p(t)‖ = ‖f (t, xr(t), pr(t))− f (t, x(t), p(t))‖
≤M‖xr(t)− x(t)‖+N‖pr(t)− p(t)‖.

This gives

‖pr(t)− p(t)‖ ≤ θ‖xr(t)− x(t)‖, t ∈ [0, b]. (19)

Proof of (18) is completed using (17) and (19). Next, by definition of successive approxima-
tions ∥∥∥∥∥x(t)−

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk − 1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds

∥∥∥∥∥
=

∥∥∥∥x(t)− xj(t) +
1

Γ(α)

∫ t

0
(t− s)α−1pj−1(s)ds− 1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds

∥∥∥∥
≤ ‖x(t)− xj(t)‖+

1

Γ(α)

∫ t

0
(t− s)α−1‖pj−1(s)− p(s)‖ds.

Taking limit as j → ∞ and noting the fact that left hand side of above inequality is inde-
pendent of j, we obtain∥∥∥∥∥x(t)−

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk − 1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds

∥∥∥∥∥ = 0, t ∈ [0, b].

Therefore,

x(t) =

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p(s)ds, t ∈ [0, b]. (20)
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This implies that x(t) is solution of (1) with initial condition x(k)(0) = y(k)(0) ∈ Rn, k =
0, 1, ...,m− 1. Further, from (15) and (16), we have

‖y(t)− x(t)‖ ≤
(
Eα(θbα)− 1

θ

)
ε, t ∈ [0, b].

This proves that the equation (1) is Ulam-Hyers stable. Moreover, as x(k)(0) = y(k)(0), k =
0, 1, ...,m− 1 the equation (1) has Ulam-Hyers stability with the initial condition.

It remains to prove the uniqueness of x(t). Assume x̃(t) is another solution of (1) with the

initial conditions x̃(k)(0) = y(k)(0), k = 0, 1, · · · ,m− 1. Then

x̃(t) =

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p̃(s)ds, t ∈ [0, b],

where p̃ ∈ B satisfies p̃(t) = f (t, x̃(t), p̃(t)). Hence we have

‖x(t)− x̃(t)‖ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖p(s)− p̃(s)‖ds, t ∈ [0, b].

Using (H1) we obtain

‖p(t)− p̃(t)‖ ≤ θ‖x(t)− x̃(t)‖.
Thus

‖x(t)− x̃(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖x(s)− x̃(s)‖ds, t ∈ [0, b]

An application of Lemma 2.4 to above inequality with u(t) = ‖x(t)− x̃(t)‖ and a(t) = 0, we
obtain

‖x(t)− x̃(t)‖ = 0 for all t ∈ [0, b].

This completes the proof.
�

Remark 4.1. If we set, ψ(ε) =

(
Eα(θbα)− 1

θ

)
ε then ψ(0) = 0 and the equation (1) is

generalized Ulam-Hyers stable.

Theorem 4.2. Let f : [0, b] × Rn × Rn → Rn be a continuous function that satisfies the
Lipschitz type condition (H1). In addition suppose that

(H2) Let η ∈ C([0, b],R+) be a nondecreasing function. There exists a constant K > 0
satisfying 0 < Kθ < 1 and∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1η(s)ds

∥∥∥∥ ≤ Kη(t), t ∈ [0, b],

where θ = M
(1−N) > 0.

Then for every ε > 0 and y : [0, b]→ Rn in B satisfying inequality

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ εη(t), t ∈ [0, b],

there exists unique solution x : [0, b] → Rn in B of NIFDE (1) with x(k)(0) = y(k)(0), k =
0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤ ε K

(1−Kθ)
η(t), t ∈ [0, b],
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Proof. For every ε > 0, let y : [0, b]→ Rn in B satisfies

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ εη(t), t ∈ [0, b]. (21)

Then there exists a function σy ∈ B (depending on y) such that

‖σy(t)‖ ≤ εη(t), t ∈ [0, b]

and
cDαy(t) = f(t, y(t),cDαy(t)) + σy(t), t ∈ [0, b]

In the view of Lemma 3.1, y satisfies the fractional integral equation

y(t) =

m−1∑
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0
(t− s)α−1p0(s)ds+

1

Γ(α)

∫ t

0
(t− s)α−1σy(s)ds, t ∈ [0, b],

where p0 ∈ B is such that

p0(t) = f
(
t, y(t), p0(t)

)
, t ∈ [0, b].

Considering the sequence (11) with x0(t) = y(t), t ∈ [0, b] defined in proof of theorem 4.5,
we prove by principle of mathematical induction that

‖xj(t)− xj−1(t)‖ ≤ ε

θ
(Kθ)jη(t), j ∈ N , t ∈ [0, b]. (22)

First we prove the inequality (22) for j=1. Using the definition of successive approximations,
for any t ∈ [0, b], we have

‖x1(t)− x0(t)‖ = ‖x1(t)− y(t)‖
= ‖Iασy(t)‖

≤ 1

Γ(α)

∫ t

0
(t− s)α−1‖σy(s)‖ds

≤ ε

Γ(α)

∫ t

0
(t− s)α−1η(s)ds

= ε

∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1η(s)ds

∥∥∥∥
≤ εKη(t).

Therefore
‖x1(t)− x0(t)‖ ≤ ε

θ
(Kθ)η(t), t ∈ [0, b],

which proves the inequality (22) for j = 1. Assuming that the inequality (22) hold for
j = r ∈ N and proceeding as in the proof of theorem 4.5, we obtain

‖xr+1(t)− xr(t)‖ ≤ θ

Γ(α)

∫ t

0
(t− s)α−1‖xr(s)− xr−1(s)‖ds

≤ θ

Γ(α)

∫ t

0
(t− s)α−1 ε

θ
(Kθ)rη(s)ds

=
ε

Γ(α)
(Kθ)r

∫ t

0
(t− s)α−1η(s)ds

= ε(Kθ)r
∥∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1η(s)ds

∥∥∥∥
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≤ ε(Kθ)rKη(t).

Therefore

‖xr+1(t)− xr(t)‖ ≤ ε

θ
(Kθ)r+1η(t), t ∈ [0, b].

which is the inequality (22) for j = r+1. By the principle of mathematical induction the proof
of inequality (22) is completed. Using the inequality (22) and the assumption 0 < Kθ < 1
we have

∞∑
j=1

‖xj(t)− xj−1(t)‖ ≤ ε

θ

 ∞∑
j=1

(θK)j

 η(t) =
ε

θ

 ∞∑
j=0

(θK)j − 1

 η(t).

Therefore
∞∑
j=1

‖xj(t)− xj−1(t)‖ ≤ ε

θ

(
1

1−Kθ
− 1

)
η(t) = ε

K

1−Kθ
η(t). (23)

Since the η(t) continuous on compact set [0, b] it is bounded and from above inequality it
follows that the series

x0(t) +

∞∑
j=1

[xj(t)− xj−1(t)]

converges absolutely and uniformly on [0, b] with respect to the norm ‖ · ‖. Set

x(t) = x0(t) +

∞∑
j=1

[xj(t)− xj−1(t)], t ∈ [0, b], (24)

and proceeding in similar fashion as in the proof of theorem 4.1 we obtain

‖y(t)− x(t)‖ ≤ ε
(

K

1−Kθ

)
η(t), t ∈ [0, b].

This completes the proof. �

Remark 4.2. If we set, ε = 1 and Kf,η = K
1−Kθ then it follows that equation (1) is general-

ized Ulam-Hyers-Rassias stable.

5. Eα-Ulam-Hyers stability

We consider the following definitions of Eα-Ulam-Hyers stabilities introduced by Wang and
Li [13].

Definition 5.1. We say that equation (1) has Eα-Ulam-Hyers stability if there exists a real
number Kf > 0 such that for each ε > 0 and each y : [0, b]→ Rn in B satisfying

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ ε, t ∈ [0, b],

there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ Kf Eα(γf t
α)ε, γf ≥ 0, t ∈ [0, b].
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Definition 5.2. We say that equation (1) has generalized Eα-Ulam-Hyers stability if there
exists a function ψ ∈ C(R+,R+), ψ(0) = 0, such that for each ε > 0 and each y : [0, b]→ Rn
in B satisfying

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ ε, t ∈ [0, b],

there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ ψ(ε)Eα(γf t
α), γf ≥ 0, t ∈ [0, b].

Definition 5.3. We say that equation (1) has Eα-Ulam-Hyers-Rassias stability with respect
to with respect to η ∈ C([0, b],R+) if there exists a real number Kη > 0 such that for each
ε > 0, if y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ εη(t), t ∈ [0, b],

then there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ KηEα(γf t
α)εη(t), t ∈ [0, b].

Definition 5.4. We say that equation (1) has generalized Eα-Ulam-Hyers-Rassias stability
with respect to with respect to η ∈ C([0, b],R+) if there exists a real number Kη > 0 such that
if y : [0, b]→ Rn in B satisfies

||cDαy(t)− f(t, y(t),cDαy(t))|| ≤ η(t), t ∈ [0, b],

then there exists a solution x : [0, b]→ Rn of equation (1) in B with

||y(t)− x(t)|| ≤ KηEα(γf t
α)η(t), t ∈ [0, b].

By the method of successive approximations we now prove the Eα-Ulam type stbility results
for equation (1).

Theorem 5.1. Let f : [0, b]×Rn×Rn → Rn be a continuous function that satisfies Lipschitz
type condition (H1). For every ε > 0, if y : [0, b]→ Rn in B satisfies

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ ε, t ∈ [0, b],

then there exists unique solution x : [0, b]→ Rn in B of NIFDE (1) with xk(0) = yk(0), k =
0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤ 1

θ
Eα(θtα)ε, t ∈ [0, b]

Proof. Noting that x0(t) = y(t), we write from (13) and (16)

‖y(t)− x(t)‖ ≤
∞∑
j=1

‖xj(t)− xj−1(t)‖ ≤
∞∑
j=0

ε

θ

(θtα)j

Γ(jα+ 1)
≤ ε

θ
Eα(θtα), t ∈ [0, b].

Showing that the the initial value problem (1) is Eα-Ulam-Hyers stable with initial conditions.
�
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Remark 5.1. Set, ψ(ε) =
ε

θ
then ψ(0) = 0, and it follows that the equation (1) is generalized

Eα-Ulam-Hyers stable.

Theorem 5.2. Let f : [0, b] × Rn × Rn → Rn be a continuous function that satisfies the
Lipschitz type condition (H1) and suppose that condition (H2) hold. Then for every ε > 0
and y : [0, b]→ Rn in B satisfying inequality

‖cDαy(t)− f(t, y(t),cDαy(t))‖ ≤ ε η(t), t ∈ [0, b],

there exists unique solution x : [0, b] → Rn in B of NIFDE (1) with x(k)(0) = y(k)(0), k =
0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤ ε K
2 +K

(1−Kθ)
η(t)Eα (tα) , t ∈ [0, b].

Proof. Noting that x0(t) = y(t), we write from (22) and (24)

‖y(t)− x(t)‖ ≤
∞∑
j=1

‖xj(t)− xj−1(t)‖ ≤
∞∑
j=1

ε

θ
(Kθ)jη(t)

=
ε

θ

Kθ

(1−Kθ)
η(t) = ε

K

(1−Kθ)
η(t), t ∈ [0, b].

Operating Iα on both sides of above inequality and using assumption (H2) we get,

Iα‖y(t)− x(t)‖ ≤ ε K

(1−Kθ)
Iαη(t) ≤ ε K2

(1−Kθ)
η(t), t ∈ [0, b].

Adding theses two inequalities we get,

‖y(t)− x(t)‖+ Iα‖y(t)− x(t)‖ ≤ ε K
2 +K

(1−Kθ)
η(t), t ∈ [0, b].

Hence,

‖y(t)− x(t)‖ ≤ ε K
2 +K

(1−Kθ)
η(t)− Iα‖y(t)− x(t)‖, t ∈ [0, b].

Noting that ‖y(t)− x(t)‖ ≥ 0, we write above inequality as,

‖y(t)− x(t)‖ ≤ ε K
2 +K

(1−Kθ)
η(t) + Iα‖y(t)− x(t)‖

= ε
K2 +K

(1−Kθ)
η(t) +

1

Γ(α)

∫ t

0
(t− s)α−1‖y(s)− x(s)‖ds, t ∈ [0, b].

An application of Lemma 2.4 to above inequality with u(t) = ‖y(t)−x(t)‖, ã(t) = ε K
2+K

(1−Kθ)η(t)

and g̃(t) = 1
Γ(α) we obtain

‖y(t)− x(t)‖ ≤ ε K
2 +K

(1−Kθ)
η(t)Eα

(
1

Γ(α)
Γ(α)tα

)
= ε

K2 +K

(1−Kθ)
η(t)Eα (tα)

Showing that the the initial value problem (1) is Eα-Ulam-Hyers-Rassias stable with initial
conditions. �

Remark 5.2. Set, ε = 1 then Kf,η = K2+K
(1−Kθ) , and it follows that the equation (1) is gener-

alized Eα-Ulam-Hyers-Rassias stable.
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6. Example

In this section, we give an example in support of the results we obtained.

6.1. Example. Let R2 be the normed space with the norm

‖x‖ = |x1|+ |x2|, x = (x1, x2) ∈ R2.

Consider the NIFDEs of the form:
cD

7
2x(t) = f(t, x(t),cD

7
2x(t)), t ∈ [0, 1.5], (25)

x(k)(0) = xk ∈ R2, k = 0, 1, 2, 3. (26)

where x : [0, 1.5]→ R2 and f : [0, 1.5]× R2 × R2 → R2 is a nonlinear function defined by

f(t, x(t),cD
7
2x(t)) = f

(
t, (x1(t), x2(t)), (cD

7
2x1(t),cD

7
2x2(t))

)
=

(
log(2 + t2)

1 + |x1(t)|+ |x2(t)|
,

|cD
7
2x1(t)|+ |cD

7
2x2(t)|

et2+1(1 + |cD
7
2x1(t)|+ |cD

7
2x2(t)|)

)
, t ∈ [0, 1.5].

For any x = (x1, x2), y = (y1, y2), x̄ = (x̄1, x̄2), ȳ = (ȳ1, ȳ2) ∈ R2, we have

‖f(t, x, y)− f(t, x̄, ȳ)‖
= ‖f(t, (x1, x2), (y1, y2))− f(t, (x̄1, x̄2), (ȳ1(t), ȳ2))‖

=

∥∥∥∥( log(2 + t2)

1 + |x1|+ |x2|
,

|y1|+ |y2|
et2+1(1 + |y1|+ |y2|)

)
−
(

log(2 + t2)

1 + |x̄1|+ |x̄2|
,

|ȳ1|+ |ȳ2|
et2+1(1 + |ȳ1|+ |ȳ2|)

)∥∥∥∥
=

∥∥∥∥(log(2 + t2)

[
1

1 + |x1|+ |x2|
− 1

1 + |x̄1|+ |x̄2|

]
,

1

et2+1

[
|y1|+ |y2|

1 + |y1|+ |y2|
− |ȳ1|+ |ȳ2|

1 + |ȳ1|+ |ȳ2|

])∥∥∥∥
=

∥∥∥∥(log(2 + t2)

[
|x̄1| − |x1|+ |x̄2(t)| − |x2|

(1 + |x1|+ |x2|)(1 + |x̄1|+ |x̄2|)

]
,

1

et2+1

[
|y1| − |ȳ1|+ |y2| − |ȳ2|

(1 + |y1|+ |y2|)(1 + |ȳ1|+ |ȳ2|)

])∥∥∥∥
= log(2 + t2)

∣∣∣∣ |x̄1| − |x1|+ |x̄2| − |x2|
(1 + ||+ |x2|)(1 + |x̄1|+ |x̄2|)

∣∣∣∣
+

1

et2+1

∣∣∣∣ |y1| − |ȳ1|+ |y2| − |ȳ2|
(1 + |y1|+ |y2|)(1 + |ȳ1|+ |ȳ2|)

∣∣∣∣
Note that for any a, b ≥ 0 we have

1 ≤ (1 + a+ b).

Therefore

‖f(t, x, y)− f(t, x̄, ȳ)‖

≤ log(2 + t2) |(|x̄1| − |x1|+ |x̄2| − |x2|)|+
1

et2+1
|(|y1| − |ȳ1|+ |y2| − |ȳ2|)|
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≤ log(2 + t2)‖(‖x̄‖ − ‖x‖)‖+
1

et2+1
‖(‖y‖ − ‖ȳ‖)‖

≤ log(4.25)‖x− x̄|‖+
1

e
‖y − ȳ‖.

Thus the function f satisfies condition (H1) with M = log(4.25) > 0 and 0 < N = 1
e < 1.

Hence by Theorem 3.2 equation (25)-(26) has unique solution on [0, 1.5].
Moreover, as shown in Theorem 4.1, for every ε > 0 if y : [0, 1.5]→ R2 satisfies

‖cD
7
2 y(t)− f(t, y(t),cD

7
2 y(t))‖ ≤ ε, t ∈ [0, 1.5], (27)

there exists unique solution x : [0, 1.5]→ R2 such that

‖y(t)− x(t)‖ ≤

E 7
2
(θ(1.5)

7
2 )− 1

θ

ε for all t ∈ [0, 1.5],

where θ =
M

1−N
=

log 4.25

(1− 1
e )

=
e log 4.25

(e− 1)
. Hence NIFDE (25) is Ulam-Hyers stable. Further,

as discussed in Remark 4.1 NIFDE (25) is also generalized Ulam-Hyers stable.
Again, for every ε > 0 if y : [0, 1.5]→ R2 satisfies (27) by Theorem 5.5 there exists unique

solution x : [0, 1.5]→ R2 such that

‖y(t)− x(t)‖ ≤ 1

θ
E 7

2
(θ(1.5)

7
2 )ε, t ∈ [0, 1.5].

Thus NIFDE (25) is E 7
2
- Ulam-Hyers stable and by Remark 5.1 it is generalized E 7

2
-Ulam-

Hyers stable.

Define the function η(t) = CE 7
2
(t

7
2 ), where C is a constant. Then η(t) is nondecreasing

function is such that

I
7
2 (η(t)) = I

7
2 (CE 7

2
(t

7
2 )) = CI

7
2 (E 7

2
(t

7
2 )) ≤ CE 7

2
(t

7
2 ) = η(t), t ∈ [0, 1.5].

Thus the function η(t) satisfies the condition (H2) with K = 1. Further, 0 < Kθ = θ =
e log 4.25

(e− 1)
< 1.

For ε > 0 and sufficiently large value of C, let y : [0, 1.5]→ R2 satisfy

‖cD
7
2 y(t)− f(t, y(t),cD

7
2 y(t))‖ ≤ ε η(t), t ∈ [0, 1.5]. (28)

Then by Theorem 4.2, we get a solution x : [0, 1.5]→ R2 of equation (25) satisfying,

‖y(t)− x(t)‖ ≤ ε 1

(1− θ)
η(t), t ∈ [0, 1.5].

and hence the equation (25) is Ulam-Hyers-Rassias stable. Also as mentioned in Remark 4.2
equation (25) is generalized Ulam-Hyers-Rassias stable.

For every ε > 0 if y : [0, 1.5] → R2 satisfies (28) by Theorem 5.2 there exists a solution
x : [0, 1.5]→ R2 such that

‖y(t)− x(t)‖ ≤ ε 2

(1− θ)
η(t)E 7

2

(
t
7
2

)
, t ∈ [0, 1.5].

shows that the equation (25) is E 7
2
-Ulam-Hyers-Rassias stable and by Remark 5.2 equation

(25) is a generalized E 7
2
-Ulam-Hyers-Rassias stable.
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