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ABSTRACT. In this paper we are concerned with nonlinear implicit fractional differential equa-
tions with initial conditions. We prove the existence and uniqueness results by using modified
version of contraction principle. Further, our prime aim is to present various Ulam-Hyers sta-
bility and E,-Ulam-Hyers stability results via successive approximation method.
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1. Introduction

Theory of Ulam stability is the outcome of the question raised by S. M. Ulam in 1940 (See
[1]). This theory is concerned with different kinds of equations such as: functional, integral,
differential, difference etc. Hence it is a vast field of research and one of the most important
growing subject in the area of mathematical analysis.

Motivation and basic theoretical development for the research related to Ulam-Hyers sta-
bility and Ulam-Hyers-Rassias stability problems to various forms of ordinary differential and
integral equations of integer orders can be found in [2, 3, 4, 5, 6, 7, 8, 9, 10] and the references
given therein.

Interesting results have been obtained pertaining to different kinds of Ulam-Hyers stability
for ordinary fractional differential and fractional integral equations with and without delay.
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We mention here few recent works by Wang et al. [11, 12, 13, 14], Eghbali et al.[15] and Wei
et al.[16]; also see the references cited therein.

Recently, Benchora et al. [17, 18, 19] obtained existence and various kinds of Ulam-Hyers
stabilities for nonlinear implicit fractional differential equations (NIFDEs) involving Caputo
fractional derivative with initial and boundary conditions. Kucche et al. [20, 21] have studied
existence, uniqueness, continuous dependence and other properties of solutions for NIFDEs .

Here we consider the NIFDEs of the form:

‘D%%(t) = f(t,z(t), D*x(t)),t € [0,b],b > 0, for somea,m —1 < a<meN, (1)
e® )=z, R, k=0,1,---,m—1, (2)

where f:[0,b] x R” x R™ — R™ is a nonlinear continuous function, z : [0,b] — R"™ and D%
denotes the Caputo fractional derivative of order a with lower terminal 0.

In the present paper, we obtain existence and uniqueness of solutions for NIFDEs (1)-(2)
using modified version of contraction principle. Taking motivation from [6, 10] we present
the Ulam-Hyers stability and E,-Ulam-Hyers stability results for NIFDE (1) by successive
approximation method.

We remark that Ulam-Hyers stabilities for NIFDEs have been studied by Benchohra and
Lazreg [18] using fixed point approach. Our attempt is here to establish Ulam-Hyers stabil-
ity and E,-Ulam-Hyers stability results for NIFDE (1) with initial conditions by virtue of
successive approximation method.

2. Preliminaries

Consider the real space R” with the norm ||-|| and denote by B = C™(]0, b], R")-the Banach
space all functions from [0, b] into R™ having m'" order continuous derivatives endowed with
supremum norm || - || g.

Here we give some basic definitions and the results [22, 23, 24, 25] which are required
throughout this paper.

Definition 2.1. Let g € C[0,b] and o > 0 then Riemann-Liouville fractional integral of order
a of a function f is defined as

1(t) = P(la) /O (t — 57 1 g(s)ds,

provided the integral exists.Note that I°g(t) = g(t).

Definition 2.2. Let m — 1 < a < m € N. Then Caputo fractional derivative of a function
g € C™[0,b] is defined as

1 t
cpe — _ m—a—1_(m) ]
o) = gy | (= g s
Lemma 2.1. Letm—1<a<m €N and g € C"[0,b]. Then
m—1 (k)
afc o 9 (O) k
1°[°D —gt) = S Lk,
(D (0] = g(t) = Y it

k=0



38 KISHOR D. KUCCHE AND SAGAR T. SUTAR

Lemma 2.2. Let g(t) = t°, where § >0 and let m —1 < a < m, m €N, then

0 if §€{0,1,-+ ,m—1},

‘D%g(t) =
o) {F(Fﬁﬁ)a)t&_a if eN,o>mord¢NJ>m—1.

Definition 2.3. Let v > 0, then one parameter Mittag-Leffler function of order v > 0 is
defined by

o0

Zk
B =2 rr i1y

We need the following results in our analysis.

Lemma 2.3. [26] For all u >0 and v > —1,
(W + 1)

t
t— s ls¥ds = thtV .
/0 ( ) F(p+v+1)

In order to derive our result, we need the following generalized singular Gronwall inequality
introduced by Ye et al.[27]

Lemma 2.4. [27] Suppose 5 > 0, a(t) is a nonnegative function locally integrable on 0 <
t < b, b < oo and §(t) is nonnegative, nondecreasing continuous functions defined and
g(t) < M, t € (0,b], and suppose y(t) is nonnegative and locally integrable on (0,b] with

y(t) < at) + 3(t) /0 (t - 5P~ Yy(s)ds, t € (0,1,
Then

y(t) < af(t) +/0 Z w(?ﬁ —5)"La(s)| ds, t e (0,0].

Remark 2.1. Under the hypothesis of Lemma 2.4, let a(¢) be a nondecreasing function on
[0,b). Then we have

y(t) < a(t)Es(g(t)r(8)t").

To prove the existence and uniqueness results for (1)-(2), we use the modified version of
contraction principle given below.

Lemma 2.5 ( [28], Modified version of contraction principle). Let X be a Banach space and
let D be an operator which maps the element of X into itself for which D" is a contraction,
where T s a positive integer then D has a unique fixed point.

Definition 2.4. A function x € B is said to be a solution of (1)-(2) if x satisfies the equation
cD(t) = f(t,z(t),c D*x(t)) on [0,b], and also satisfies the initial conditions z*)(0) =
zp, k=0,1,--- . m—1, where m —1 <a<me€N.

3. Existence and uniqueness

In the following lemma we obtain an equivalent fractional integral equation to the problem

(1)-(2)
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Lemma 3.1. . Let f:[0,0] x R® x R™ — R" be a continuous function. Then the NIFDEs
(1)-(2) is equivalent to the fractional integral equation

m—1

_ Tk k 1 ! a—1
x(t) = kzzo NOEE —|—F(a)/0(t—s) p(s)ds, t € [0,b], (3)
where p € B satisfies the functional equation
m—1
p(t) = f (t, > et fapof),p(t)) e 0, (4)
k=0

Proof. Let x : [0,b] — R™ in B is a solution of NIFDE (1)-(2). Put
‘D% (t) = p(t), t €[0,0], m—1<a<m(meN),

where p € B. Operating % on both side, in the view of Lemma 2.1, we obtain

m—1
2(t) = kzzo %tk +I%(t) ,t € [0,b].

Thus equation(1) becomes

p(t) = [ (8 x(t), p(t))

m—1
= f <t, ’; %tk + Io‘p(t),p(t)> , t€[0,0].

Hence z is solution of fractional integral equations (3), here p € B satisfies (4).
Conversely let z : [0,b] — R™ in B satisfies the integral equation (3) where p € B satisfies
(4). Then equation (3) can be written as

m—1
2(t) = kzzo %tk +I%(t) ,t € [0,0]. (5)

Using Lemma 2.2 and the continuity of p, an application of the operator ¢D® on both sides
of the above equation, gives

m—1
DY (t) = kzo ﬁcﬂl{tk} + CDYT(t) = p(t) ,t € [0,B]. (6)
But p satisfies (4). Thus using (5) and (6) in (4), we obtain
°D%(t) = f(t,z(t)," D*x(t)), t€]0,b].
Further from (3), one can verify that
2®(0) = xp, (k= 0,1,--- ,m — 1).
(|

In the next theorem we prove the existence and uniqueness results for (1)-(2) by using
modified version of contraction principle given in Lemma 2.5.

Theorem 3.1. (Ezistence and uniqueness) Let f : [0,b] x R™ x R™ — R™ be a continuous
function that satisfies the Lipschitz type condition:
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(H1) there exist constants M >0 and 0 < N < 1 such that

Hf(ta'r7y) _f(tvjjug”’ < MH%’-.@'H +NHy_gH7 te [Oab]a z,T,Y,Y € R"™.

Then the initial-value problem (1)-(2) has a unique solution x : [0,b] — R™.

Proof. In the light of Lemma 3.1, we write the problem (1)-(2) as a fixed point problem.
Consider the operator F' : B — B defined by

m—1 t
Fa(t) = kzzo - (k"’“"i l)tk~|— F(la) /O (t —s)* p(s)ds, t € [0,0],

where p € B satisfies the functional equation

p(t) = [ (t,2(t),p(t)), t €10,0].

Our aim is to prove that F' has a fixed point. By using mathematical induction, for any
x,z € B and t € [0, b], we prove that

: , (6t)I .
F _ [ < VT e
IFia(t) = P20l < o psllo = #la. Vi €N, @
M
h =(— .
where 6 <1—N> >0
Let any x,z € B and t € [0,b]. Then by definition of operator F' we have,
t
Fzx(t)— Fz(t)|| < /t—salps—qs ds, 8
[ Fa(t) @)l F(a)o( )*lp(s) = a(s)ll (8)

where p, g € B satisfies the functional equations

p(t) =f (t,w(t),p(t)) and Q(t) =f (t7 Z(t)7 Q(t)) S [07 b]
By assumption (H1), for any ¢ € [0, b], we have

lp(t) = @) = [1f (&, x(8), p()) = [ (£, 2(2), a(1)) |
< Mjz(t) = 2(O)] + Nlp(t) = a(@)]-
Therefore
Ip(t) = a(@®)| < Ol|=(t) = 2()]], t € [0,0].
Using the above estimation in (8), we obtain

b t—so‘*lms—zs s
w7 [ =97 () = 25

6 o— l

Therefore,
[Fa(t) — Fz(t)] < {%7@”3: — 2|, t €0,0]
Fa+1)
Thus the inequality (7) holds for j = 1. Let us suppose that (7) holds for j = r € N, that is,

|F"x(t) — F"2(t)|| < T (6’ |z — z||B, t €10,0]. 9)

(ra+1)
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We prove that (7) holds for j = r + 1. Again, by definition of operator F', we have

I(E () — (F™)z(t)] = |[F(Fa(t) — F(F2(1))]

0 t —8)*7|n(s) — g(s)||ds
< Fay | (6= 9 Ins) = g(e)ds. 1 € .0

where h, g € B are such that
h(t) = f(t,F x(t),h(t)) and g(t) = f (t,F"2(t),g(t)), t € [0,b].
By assumption (H1) we have
1h(t) = g < O F"(t) — F72(8)]], ¢ € [0,0].
Hence we get,

r r 0 ! a— T T
IE Dz (t) — (F )zt < F(a)/o (t =) Fa(s) — FT2(s)l|ds, t € [0,0].

Using (9) and the Lemma 2.3 in the above inequality, we obtain

T T 4 ! a— (esa)r
I (t) = (0] < /0 (=" gy e — 2l

<ttt =<l

_ or+t sa(r+1) F(a)(ra+1)
M) (ra+1) M'((r+1)a+1)

= 2 5.

Therefore,

|| (eta)rJrl
“I((r+1)a+1)

We have proved that the inequality (7) holds for j = r + 1. By principle of mathematical

induction the proof of the inequality (7) is completed.
From the inequality (7) we have

I(E™ () = (F7)2(t) | = 2l[B, t €[0,8].

- . obe
|F/x — F'z||p = sup |[F/z(t) — ()||_¥||$—Z||B-
te[0,b] [(ja+1)

By definition of one parameter Mittag-Leffler function, we have
o0
(Ob>)I
o (06%)
Z Ija+1)

Note that ((]a ll) is the j*" term of the convergent series of nonnegative real numbers, hence

we must have

. (6b%)7
lim ———— =
j—oo D(jar + 1)
(Gl
T(ja+1)
modified version of contraction principle, F' has a unique fixed point z : [0,b] — R™ in B,
which is the unique solution of the initial value problem (1)-(2). O

Thus we can choose j € N such that < 1 so that F7 is a contraction. Therefore by
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4. Ulam-Hyers Stability of NIFDE

To study the stability results we use following definitions adopted in [12, 18].

Definition 4.1. We say that equation (1) has Ulam-Hyers stability if there exists a real
number Ky > 0 such that for each € > 0, if y : [0,b] = R" in B satisfies

||CDay(t) - f(tvy(t)’c Day(t))H < & te [Oa b],
then there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(t) —=(O)]] < e Ky, t €[0,0].

Definition 4.2. We say that equation (1) has generalized Ulam-Hyers stability if there exists
€ C(Ry,Ry),9¥(0) =0 such that for each € > 0, if y : [0,b] = R™ in B satisfies

1°D%y(t) — f(t,y(8)," Dy (t))|| <€ ¢ €0,0],
then there exists a solution x : [0,b] — R"of equation (1) in B with
ly(t) —x(B)[| < ¢(e), t € [0,0].

Definition 4.3. We say that equation (1) has Ulam-Hyers-Rassias stability with respect to
with respect ton € C([0,b],Ry) if there exists a real number Ky > 0 such that for each e > 0,
if y:[0,b] = R™ in B satisfies

1°D¥y(t) — f(t, y(t)," Dy(@®)[| < en(t), t € 0,0],
then there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(t) —z(t)|] < Kpen(t), t € [0,b].

Definition 4.4. We say that equation (1) has generalized Ulam-Hyers-Rassias stability with
respect to with respect to n € C([0,b],Ry) if there exists a real number Ky, > 0 such that if
y:[0,b] — R™ in B satisfies

1°D%y(t) — f(t,y(t),c Dy (1))l < n(t), t €0,0],
then there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(@) = 2@ < Kyyn(t), t € [0,0].

In the following theorems by method of successive approximation we prove Ulam-Hyers
type stability results for equation (1).

Theorem 4.1. Let f : [0,b] x R" x R"™ — R™ be a continuous function that satisfies the
Lipschitz type condition (H1). For every e >0, if y : [0,b] — R"™ in B satisfies

1Dy (t) — f(£,y(2)," Dy ()]l <, t €10,0],

then there exists unique solution x : [0,b] — R™ in B of NIFDE (1) with ) (0) = y®)(0), k =
0,1,2,...,m — 1, that satisfies

lo(0) - a0 < (= )e 1 e o

wher60:%>0
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Proof. For every € > 0, let y : [0,b] — R™ in B satisfies
[°D%y(t) — f(t,y(t), DY)l <€, t € [0,0], (10)
then there exists a function o, € B (depending on y) such that ,
loy (@)l <€ t €0,0]
and
‘D(t) = f(t,y(t)," Dy(t)) + oy(t), t € [0,0]

In the view of Lemma 3.1, y satisfies the fractional integral equation

m—1 (k) t t
y(t) = ,;0 Fy(k' _i(_oi)tk + F(la) /0 (t— s)a_lpo(s)ds + F(la)/o (t— s)a_lay(s)ds, t €10,b],

where p? € B is such that

p(t) = [ (ty(®),p°(t)) , t € [0,0].
Define,
20(t) = y(t), t €[0,0],
and consider the sequence {l’j } C B defined by ,

J(+) — — y(k)(o) k 1 ! a—1,j—1 .
20=3 fry e [ -9 s et jeN. )
where p/~! € B (j € N) is such that:
P = £ (L2710, 0) s te [0, (12)
By principle of mathematical induction, we prove that
Jo7(6) = O < ety €Nt 0.8 (13)

First we prove the inequality (13) for j=1. Using the definition of successive approximations,
for any ¢ € [0, b], we have

) .
kzzo Fy(k ioi)tk * F(la) /0 (t— ) 1p"(s)ds — y(t)

m=1 (k) m=L . (k)
S st~ (8 80 o)
k=0 k=0

' () = 2" (®)] =

= [[1%a, (@]

1 t — 5) Yoy (s)||ds
< a7 | =9 o)l
et

=Tat1)

Therefore
o0t

I#'®) = 2Ol < G

, t€[0,0],
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which proves the inequality (13) for j = 1. Now, we assume the inequality (13) hold for

j =17 € N and prove it for j = r + 1. Using definition of successive approximations for any
te0,b],

"+ (t) — 2" (1) = Hr<1a> /0 (t =) (¢ (s) = ' (5)) ds

< s [a=or ) -5 ) s (1)
Since p’(t) = f (t, xJ (t),p7(t)) , t €[0,b], using the assumption (H1) we obtain,
[p" (1) =" @) = ||F (2" (), 07 (6)) = f (2" H(1), 0" (1) |
< Ml (t) =" ()] + Nlp" (t) = p" ).
Therefore

2" (t) =" (@B)|| < Blla”(t) — 2" (D), t € [0,8)].
Using above estimate and the inequality (13) for j = r in (14), we obtain

2T — 2" i t — ) Ya"(s) — 2" Y(s)||ds
|2 (¢) Ol )/O(t ) 2" (s) (s)lld

(a

0 t 1€ (0sY)"
< gt 2
/0 (t=s) 0T (ra+ 1)d$

_ € m/t(t_ )a—l rag
T D@ TGatl) )y YT

Using Lemma 2.3, we have

0" IMNo)l(ra+1)
r+1 T < € (r+1)c
IO =2 Ol < oy Frav D’ N+ Dat 1)
Therefore
E (Hta)r-i-l

lz"1 () — 2" ()] <

0,b].
0T+ Va s 1) <00
which is the inequality (13) for j = r + 1. Using principle of mathematical induction the
proof of the inequality (13) is completed.

Note that from (13),

. ) a)J

2/ (t) — 2771 (t)| < 21“(31%—3—1) for any ¢ € [0,b] and j € N.
Therefore for any ¢ € [0, b] we can write,

=, ; (b €

i(t) — 27 (1)) < = Ea(06%) —1). 15

OECES _gg G = 5 Ea0) =1 (15)

Hence the series
20(t) + Y 2l (1) — 27 (1)]
j=1

converges absolutely and uniformly on [0, b] with respect to the norm || - ||. Let
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+§: — 277 1)), t€0,0]. (16)

7=1

—|—ij — 277 (1)]

is the r*" partial sum of the series (16) we have
ILm |lz"(t) — x(t)|| = 0, for allt € [0,D]. (17)

Then

Since the convergence is uniform, z € B. We prove that the limit function x is a solution of

m—1 (k) ¢
x(t) = Z Fy(k _i(_oi)tk + F(la) /0 (t — )2 Ip(s)ds, t € [0,b],

k=0
where p € B satisfies the functional equation
p(t) = f (&, (t),p(t), t €[0,0].
First we prove that p” € B (r =0,1,2,...) generated in (12) satisfies
Tim [[p7(t) — p(t)]| = 0 for any ¢ € [0,1] (18)

By using assumption (H1), we obtain
12" (t) = p@)| = IIf (& 2" (8),p" (1)) — f (&, 2(t), p(£))|
< Mjz"(t) — z(8)[| + Nl[p" (t) = p()]-
This gives

lp"(#) = pO < Ol]2"(t) = =(®)]l, ¢ € [0,0]. (19)
Proof of (18) is completed using (17) and (19). Next, by definition of successive approxima-
tions

m—1

y®(0) 1 .
T(k+ 1)tk " T(a) /0 (=) p(s)ds

x(t) — 27 (t) + 1“(104)/0 (t — ) 1p 1 (s)ds — F(la)/o (t —5)* p(s)ds

1

< le() P 0] + 5 /0 (t— 2P\ (s) — p(s)||ds.

Taking limit as 7 — oo and noting the fact that left hand side of above inequality is inde-
pendent of j, we obtain

k=0

m—1 (k) +
z(t) — 2 I’y(k: ioi)tk - F(la) /0 (t —s)* p(s)ds|| =0, t €[0,].
Therefore,
m—1 (k) +
x(t) = Fy(k _i(_oi)tk + I‘(la) /0 (t— s)o‘_lp(s)ds, t €0,b]. (20)
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This implies that 2(t) is solution of (1) with initial condition z®)(0) = y*®)(0) € R?, k =
0,1,...,m — 1. Further, from (15) and (16), we have

R e R

This proves that the equation (1) is Ulam-Hyers stable. Moreover, as 2(¥)(0) = y*)(0), k =
0,1,...,m — 1 the equation (1) has Ulam-Hyers stability with the initial condition.

It remains to prove the uniqueness of z(t). Assume Z(t) is another solution of (1) with the
initial conditions 2*)(0) = *)(0), k =0,1,--- ,m — 1. Then

m—1

y(k 1) P(la) ~/0 (t S)a 125(8) o te [Oab]7
0 d
t.x

where p € B satisfies (t f(t,z(t),p(t)). Hence we have

- 1 ! o _
lz(t) = 2(0)] < F(a)/o (t =) "Hp(s) = B(s)llds, t € [0,0].

Using (H1) we obtain
lp(t) = p(B)I] < Ol|(t) — 2(2)]]-

Thus
0

t

x(t) — z(t) S/ t —s)* Y a(s) — #(s)||ds, t €[0,b

Jof6) =30l < iy [ (6= 9% Hlals) = a)lds, t € 0.4
An application of Lemma 2.4 to above inequality with u(t) = ||z(t) — Z(¢)|| and a(t) = 0, we
obtain

|lz(t) — 2(t)|| = 0 for all t € [0,D].
This completes the proof.
]

En(0b%) — 1

Remark 4.1. If we set, ¥(e) = < 7

)e then ¥(0) = 0 and the equation (1) is
generalized Ulam-Hyers stable.

Theorem 4.2. Let f : [0,0] x R" x R®™ — R"™ be a continuous function that satisfies the
Lipschitz type condition (H1). In addition suppose that

(H2) Let n € C([0,b],Ry) be a nondecreasing function. There exists a constant K > 0
satisfying 0 < KO <1 and

1 ! a—1
Hf(a) /0 (t—s)*""n(s)ds
where 0 = % > 0.

< Kn(t), t €[0,0],

Then for every e >0 and y : [0,b] — R™ in B satisfying inequality
[°D%y(t) — f(t, y(t),” Dy ()] < en(t), t € [0,0],
there exists unique solution x : [0,b] — R™ in B of NIFDE (1) with ) (0) = y*)(0),k =
0,1,2,...,m — 1, that satisfies
K

ly(t) — z(®)]| < emn(t)v t € [0,0],



Proof. For every € > 0, let y : [0,b] — R™ in B satisfies
[°D%y(t) — f(t, y(t),” Dy ()] < en(t), t € [0,0].
Then there exists a function o, € B (depending on y) such that
loy (Bl < en(t), t € [0,0]
and
Dy(t) = f(t,y(t),” DY(t)) + oy(t), t €[0,0]
In the view of Lemma 3.1, y satisfies the fractional integral equation

=), 1

y(t) = ZT(k+1)  T(a

where p' € B is such that
p(t) = f (ty(®),p°(t)), t € [0,8].
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t —5)*1p%(s)ds L t —5)* oy (s)ds
Pt ro | =T s+ s [ = oy s, e 00,

Considering the sequence (11) with 2°(t) = y(¢), t € [0,b] defined in proof of theorem 4.5,

we prove by principle of mathematical induction that

|27 (t) — 2771 (1) < g(KG)jn(t), jeN,te[0,b].

(22)

First we prove the inequality (22) for j=1. Using the definition of successive approximations,

for any ¢ € [0, b], we have

l='(t) = 2° (@)1l = [l=* (£) — (@)l
= 1%, ()]

t —5)* Yoy (s)||ds
< Fag | (=9 o)l

t — 5)* In(s)ds
< gy | =9 ()

=c 1 t — $)¥ n(s)ds
i | =T
< eKn(t).
Therefore .
2t (t) = 2°(1)]| < g (EO)n(t), t € 0,8,

which proves the inequality (22) for ;7 = 1. Assuming that the inequality (22) hold for

j =r € N and proceeding as in the proof of theorem 4.5, we obtain

0

TN — 2" — t —8)* Ya"(s) — 2" Y(s)||ds
2" (¢) @Ol < /O(t ) 2" (s) (s)lld

I'(«)

0 t —s)a1s "n(s)ds
< S [ €= S w0y (s

= - —5)* In(s)ds
= w0 [ (=9 n(s)a

1

= e(KO)" F(a)/o (t —5)*In(s)ds
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< e(K0)" Kn(t).
Therefore

o™ (t) = " (]| < 5 (K6 n(t), ¢ € (0,0,

which is the inequality (22) for j = r+1. By the principle of mathematical induction the proof
of inequality (22) is completed. Using the inequality (22) and the assumption 0 < K6 < 1
we have

iuscj(t)ij—l(t)nsf iwmj n(t) = < i(@K)Ll n(t).
0 0
j=1 Jj=1 Jj=0
Therefore
— | i € 1 K
SECEE ol < 5 (=g 1) 0 = 1= g 10 (23)

Since the 7(t) continuous on compact set [0,b] it is bounded and from above inequality it
follows that the series

() + ) [27(t) — a7 (1))
j=1
converges absolutely and uniformly on [0, b] with respect to the norm || - ||. Set
() = 2°(t) + Y _[a7(t) =77 (1)], t € 0,8, (24)
j=1

and proceeding in similar fashion as in the proof of theorem 4.1 we obtain

Io(0) ~ 201 < ¢ (=45 ) (0. t € 0.8

This completes the proof. O

Remark 4.2. If we set, e = 1 and K, = 125 then it follows that equation (1) is general-
ized Ulam-Hyers-Rassias stable.

5. E,-Ulam-Hyers stability
We consider the following definitions of E,-Ulam-Hyers stabilities introduced by Wang and
Li [13].

Definition 5.1. We say that equation (1) has E,-Ulam-Hyers stability if there exists a real
number Ky > 0 such that for each € > 0 and each y : [0,b] = R"™ in B satisfying

1°D%y(t) = f(t, y(t)," Dy(X))[| <€ t €0,b],
there exists a solution x : [0,b] — R™ of equation (1) in B with

ly(t) =2z < Ky Ea(vst%)e, 75 20, ¢ €0,0].
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Definition 5.2. We say that equation (1) has generalized E,-Ulam-Hyers stability if there
exists a function ¥ € C(R4,Ry), ¥(0) = 0, such that for each € > 0 and each y : [0,b] — R™
in B satisfying

1Dy (t) — £(t,y(t),° DY)l <€, t € 0,0,
there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(t) —z@I] < (€)Ea(vst), 75 20, t €0,0].

Definition 5.3. We say that equation (1) has E-Ulam-Hyers-Rassias stability with respect
to with respect to n € C([0,b],Ry) if there exists a real number K, > 0 such that for each
e>0, ify:[0,b] = R"™ in B satisfies

1°D%y(t) — f(t, y(t),* Dy())|| < en(t), t € [0,b],
then there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(t) — 2@ < KnEa(yst®)en(t), t € [0,0].

Definition 5.4. We say that equation (1) has generalized Eq-Ulam-Hyers-Rassias stability
with respect to with respect to n € C([0,b],Ry) if there exists a real number K, > 0 such that
if y:[0,b] = R™ in B satisfies

[[“D*y(t) — f(t,y(t),” Dy(t))|| < n(t), t €[0,0],
then there exists a solution x : [0,b] — R™ of equation (1) in B with
ly(t) — z(t)]| < KyEa(vst*)n(t), t € [0,0].

By the method of successive approximations we now prove the E.,-Ulam type stbility results
for equation (1).

Theorem 5.1. Let f : [0,b] x R” x R™ — R™ be a continuous function that satisfies Lipschitz
type condition (H1). For every e >0, if y : [0,b] — R"™ in B satisfies

D%y (t) — f(t,y(1)," Dy ()]l <, t €10,0],
then there exists unique solution x : [0,b] — R" in B of NIFDE (1) with x*(0) = y*(0),k =
0,1,2,...,m — 1, that satisfies
1 (0%
ly(®) —2(®)]] < 5 Ea(0%)e, t € [0,0]

Proof. Noting that z°(t) = y(t), we write from (13) and (16)

> ot)J €
— < J )| < e_0)y < - o :
ly(®) - ()| }jux =N Y i < B e

Showing that the the initial value problem (1) is E,-Ulam-Hyers stable with initial conditions.
O
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Remark 5.1. Set, ¢(¢) = 5 then ¢(0) = 0, and it follows that the equation (1) is generalized
E,-Ulam-Hyers stable.
Theorem 5.2. Let f : [0,0] x R x R — R"™ be a continuous function that satisfies the
Lipschitz type condition (H1) and suppose that condition (H2) hold. Then for every e > 0
and y : [0,b] = R™ in B satisfying inequality

1“D%y(t) — f(t, y(t),” DY(E)|| < en(t), t € [0,0],
there exists unique solution  : [0,b] — R™ in B of NIFDE (1) with ) (0) = y®*)(0),k =
0,1,2,...,m — 1, that satisfies

K*+ K
t)—z()|| < e———n(t)E, (t*), t € [0, b].
I9(0) —(0)] < ey~ n OB (). ¢ € [0

Proof. Noting that z°(t) = y(t), we write from (22) and (24)

ly(®) =20 < 3 a7 (t) =27 (1) < Y Z(KO) ()
j=1 j=1

e K0 K
= q(t) = e————n(t), t € [0,b].
Operating I® on both sides of above inequality and using assumption (Hs) we get,
K K?
I“y@) —z@)|| < e——<In(t) < e——n(t), t b].
I = 20)] < €y 1700) < = gegn(): £ € 0.8
Adding theses two inequalities we get,
K+ K
t) —x(t I¥y(t) — z(t)|| < e———n(t), t €]0,0].
I(6) = 20)]1+ I°ytt) — (@) < e = ggon(®) £ € 0.1
Hence,
K’+ K
t) —z(t)]| < e———n(t) = I¥||y(t) — x(t)], t b].
I(6) = 20)] < €y — gy n®) = I°y(®) = 2(0)] + € 0.4
Noting that ||y(t) — x(t)|| > 0, we write above inequality as,
K2+ K
_ <e— T G _
ly(t) —z(t)] < = K@)n(t) + Iy (t) — =(t)]]

K2+ K 1t .
=€e———Nt) + == t—s)" — ds, t €10,0].
6(1—K9)77( )+ o) /0 (t—s)* Hy(s) — z(s)||ds, t € [0,b]
An application of Lemma 2.4 to above inequality with u(t) = ||y(t) —x(t)]], a(t) = ei(fi}‘(fg)n(t)
and g(t) = ﬁ we obtain

2 2
I9(0) = 201 < e —regen®)Bn (g @) = e —genFa (6

Showing that the the initial value problem (1) is E,-Ulam-Hyers-Rassias stable with initial
conditions. 0

Remark 5.2. Set, ¢ = 1 then Ky, = %, and it follows that the equation (1) is gener-

alized E,-Ulam-Hyers-Rassias stable.
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6. Example

In this section, we give an example in support of the results we obtained.

6.1. Example. Let R? be the normed space with the norm

2]l = 1] + |22, @ = (21, 22) € R?.
Consider the NIFDEs of the form:
°Digx(t) = f(t,2(t),° D3x(t)), t € [0,1.5], (25)
e®(0) =z, e R?, k=0,1,2,3. (26)

where z : [0,1.5] = R? and f : [0,1.5] x R? x R? — R? is a nonlinear function defined by
F(t2(t), D3a(t) = f (& (@1(t), 22(), (‘D31 (1) D3as (1) )
log(2 + °D2zy(t)| + [°D?
:< 0g(2 + %) D21 (1) + *D3as (1) ),te[om'

Lt [z1 ()] + [22(t)] e2+1(1 4 [cD3 21 (8)] + |D322(t)))
For any = = (z1,72), ¥y = (y1,%2), T = (Z1,72), ¥ = (71,%2) € R?, we have
[f(t 2 y) = f(t,Z,9)l
= [|f(t, (21, 22), (y1,92)) — [t (Z1,Z2), (51 (8), 2)) |

:H< log(2 +t%) 2] + [y2] )
L+ |z1| + |za|” €+ (1 + |y1] + |y2l)

( log(2 + %) 1] + |72]
L+ [Z1| 4 |Z2| et +1(1 + |y1| + |92])

1
|1+ 21| + |22 1+]:D1|+|x

)

Al

ly1] + |9l |91 + (%] DH
]

)

- ‘(log(Q—i—t)

1
et?+1

2
B ‘(10?5(“” T+ Jol + 22) (1 + [21] + [72])
1 [ ly1| — |91] + |y2| — |92 ]H
e+ (14 Jya| + [y (1 4 [g2] + [52])
21| — |21 + | 72| — |22 ‘
(L4 ]+ w2 ) (1 + |Z1| + [Z2])
[yl — 11| + ly2| — 172] ’
(T4 Jya| + ly2D) (1 + |71 + [=])

L+ yal +ly2l 1+ 31 + (92
1Z1| — |z1] 4 [Z2(1)] — |2]

| ——
1

= log(2 + t?)

1
et?+1

+

Note that for any a,b > 0 we have
1< (1+a+b).
Therefore

Hf(t,.’B, y) - f(t@’vﬂ)H

_ _ 1 _ _
< log(2+ %) [(121] = 1] + [22] = |22l + =27 [(lya| = 9] + [y2] = I32])]
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_ 1 _
<log(2 +)[I(Iz]l - ll=l)ll + eyl =Tl
_ 1 _
< log(4.25) ]z — 2|l + —lly — 7ll.

Thus the function f satisfies condition (H1) with M = log(4.25) >0 and 0 < N =1 < 1.
Hence by Theorem 3.2 equation (25)-(26) has unique solution on [0, 1.5].
Moreover, as shown in Theorem 4.1, for every € > 0 if y : [0, 1.5] — R? satisfies

[°D3y(t) — F(ty(0). D2y()| < e, t € (0,15, (27)
there exists unique solution x : [0, 1.5] — R? such that
E:(0(1.5)2) — 1

2
6

lly(t) — z(t)]| < e for all ¢ € [0,1.5],
M log4.25 elog4.25
1-N  (1-1 " (e-1)
as discussed in Remark 4.1 NIFDE (25) is also generalized Ulam-Hyers stable.
Again, for every e > 0 if 3 : [0,1.5] — R? satisfies (27) by Theorem 5.5 there exists unique
solution x : [0,1.5] — R? such that

ly(t) — 2@ <

Thus NIFDE (25) is E%— Ulam-Hyers stable and by Remark 5.1 it is generalized E%—Ulam—
Hyers stable.

Define the function 7(t) = C’E% (t
function is such that

I3 (n(t) =1

Thus the function 7(t) satisfies the condition (H2) with K = 1. Further, 0 < K0 = 0 =
elog4.25 <1

(c—1)

For € > 0 and sufficiently large value of C, let y : [0, 1.5] — R? satisfy

7 ¢ NI
[°Dzy(t) — f(t,y(t)," D2y(t))|| < en(t), ¢t €[0,1.5]. (28)
Then by Theorem 4.2, we get a solution x : [0, 1.5] — R? of equation (25) satisfying,

1
t)—x(t)| <e——-7-n(t), t €]0,1.5].
[y (t) w()l!_e(l_e)n( ), t €[0,1.5]
and hence the equation (25) is Ulam-Hyers-Rassias stable. Also as mentioned in Remark 4.2
equation (25) is generalized Ulam-Hyers-Rassias stable.
For every € > 0 if y : [0,1.5] — R? satisfies (28) by Theorem 5.2 there exists a solution
x:[0,1.5] = R? such that

where 0 =

. Hence NIFDE (25) is Ulam-Hyers stable. Further,

z
2

E1(0(1.5)?)e, ¢ € [0,1.5],

D

%), where C' is a constant. Then 7(¢) is nondecreasing

z
2

(CEx(t2)) = CI3 (Bx (t2)) < OB (t3) = n(t), t € [0,1.5].

Iot6) = ()] < =gy (1) . 1 € 0.15]

shows that the equation (25) is Ez-Ulam-Hyers-Rassias stable and by Remark 5.2 equation
2
(25) is a generalized E7-Ulam-Hyers-Rassias stable.
2
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